
�������

NetarchiveSuite Developer Manual

Printer friendly version

Contents

Introduction1.

Modules

Common1.

Harvester2.

Archive3.

Viewerproxy4.

Monitor5.

Deploy6.

2.

Localization3.

JSP

The SiteSection system1.

Processing updates2.

I18n3.

4.

Coding guidelines

Sending patches1.

Coding style

Nested class definitions1.

Variable declarations2.

Miscellaneous3.

2.

Exceptions3.

Logging4.

Unit tests

What is a unit test?1.

Why would you want to do unit tests?2.

When do you write the unit tests?3.

This seems complex, why would you want to code unit-test-first?4.

What are important things to keep in mind when making unit tests?5.

How do you make a unit test for X?6.

What things are unit tests not good for?7.

5.

Practical matters

Private methods1.

JUnit assertions2.

Mock-ups3.

6.

Settings7.

5.

Pluggable parts

How pluggability works1.

RemoteFile2.

JMSConnection3.

ArcRepositoryClient4.

IndexClient5.

DBSpecifics6.

6.

Database7.

Introduction

edit

This manual is intended to provide a starting point for writing Java code for the

NetarchiveSuite system. After a rough overview of the main packages, it describes two of the

expected primary starting points, namely localization (making NetarchiveSuite speak your

language) and the JSP pages involved in the graphical user interface. After that, we provide an

introduction of the coding practices we have been using and how they may apply to external

developers. We then describe the plug-in architecture present and the currently available

plugging points, as well as the database design used for the harvest management system.

Finally, we provide a tour of what happens when a harvest is performed and when data is

�������

stored in the archive. We hope that these descriptions will allow a developer to improve or

adapt some functionality of NetarchiveSuite for ones own needs. This manual does not

describe how to install, run, or use NetarchiveSuite, for that look to the Installation Manual

and the User Manual.

The reader is expected to be familiar with Java programming and have an understanding of

the core issues involved in large-scale web harvesting. Having used Heritrix before is a

definite plus, and an elementary understanding of SQL databases is required for some parts.

Modules

edit

There are six main modules in the NetarchiveSuite software, though one of them is so specific

to the Netarkivet installation that it's only included for compilability and should otherwise be

ignored. This section gives an overview of what's contained in each module, and points out

some of the most important packages. All sources are found in the ��� directory, and all

packages start with �����	
�����	. Units tests are similarly arranged, but under 	��	�

instead of ���.

Common

The �����	
�����	��
��
� package and its subpackages provide module-neutral code

partly of a generic nature, partly specific to NetarchiveSuite.

Harvester

The �����	
�����	��
����	�� package and its subpackages handle the definition and

execution of harvests.

Archive

The �����	
�����	�
������ package and its subpackages provide redundant,

distributed storage primarily for ARC files as well as Lucene indexing of same.

Viewerproxy

The �����	
�����	���������
�� package implements a simple access client to the

�������

archived data, based on web-page proxying.

Monitor

The �����	
�����	��
��	
� package provides web-access to JMX-packaged

information from all NetarchiveSuite applications.

Deploy

The Deploy module should be ignored, as it is fairly specific to the Netarkivet setup. It is only

distributed because it would be more bother to fix the compilation problems inherent in

excluding it.

Localization

edit

The NetarchiveSuite web pages are internationalized, that is they are ready to be translated

into other languages. The default distribution only contains a default (English) version and a

Danish version, but adding a new language does not take any coding. All translatable strings

are collected in five resource bundles, one for each of the five main modules mentioned

above. The default translation files are

���������	
�����	��
��
����
���
	�
�����
���	���,

���������	
�����	�
���������
���
	�
�����
���	���,

���������	
�����	��
����	�����
���
	�
�����
���	��� ,

���������	
�����	���������
�����
���
	�
�����
���	��� , and

���������	
�����	��
��	
����
���
	�
�����
���	���.

To translate to a new language, first copy each of these files to a file in the same directory, but

with _XX after Translations, where XX is the Unicode language code for the language

you're going to translate into, e.g. if you're translating into Limburgish, use

��
���
	�
��������
���	���. If you're translating into a language that has different

versions for different countries, you may need to use _XX_YY, where XX is the language

code and YY is the ISO country code, e.g. ��
���
	�
�����������
���	��� for

Canadian French. Then edit each of the new files to have your translation instead of the

English translation for each line. Most of the important syntax should be evident from the

original, but for details consult the XXX. Note that non-ASCII characters are illegal in a

translation resource bundle, but some bundle-aware editors will do the translation between

UTF-8 and escaped Unicode characters.

�������

The translation has not yet been done throughout the code, but only in the web-related parts.

Thus log messages and unexpected error messages are still in English and cannot be translated

through the resource bundles.

JSP

edit

The webpages in NetarchiveSuite are written using JSP (Java Server Pages) with Apache

I18N Taglib for internationalization. To support a unified look across pages from different

modules, we have divided the pages into SiteSections as described in the next section. Any

processing of requests happens in Java code before the web page is displayed, such that

update errors can be handled with a uniform error page. Internationalization is primarily done

with the taglib tags <fmt:message>, <fmt:date> etc.

The main feature of JSP is that ordinary Java (not JavaScript) can be used at server-side to

generate HTML. The special tags <%...%> indicate a piece of Java code to run, while the tags

<%=...> indicates a Java expression to run whose value will be inserted (as is, see escape

mechanisms below) in the HTML. While it is possible to output to HTML from Java code

using
�	�����	��, it is discouraged as it a) is confusing to read, and b) does not allow for

using taglibs for internationalization.

We use a number of standard methods defined in

����
��
�������	���
����� !"	���. Of particular note are the following methods:

generateHeader()

This method takes a #
$��
�	��	 and generates the full header part of the HTML page,

including the starting <body> tag. It should always be used to create the header, as it also

creates the menu and language selection links. After this method has been called,

redirection or forwarding is no longer possible, so any processing that can cause fatal

errors must be done before calling $����
	���
�����. The title of the page is taken

from the %�	�%��	�
� information based on the URL used in the request.

generateFooter()

This closes the HTML page and should be called as the last thing on any JSP page.

setUTF8()

This method must be called at the very start of the JSP page to ensure that reading from the

request is handled in UTF-8.

encode()

�������

This encodes any character that is not legal to have in a URL. It should be used whenever

an unknown string (or a string with known illegal characters) is made part of a URL. Note

that it is not idempotent, calling it twice on a string is likely to create a mess.

escapeHTML()

This escapes any character that has special meaning in HTML (such as < or &). It should

be used any time a unknown string (or a string with known special characters) is being put

into HTML. Note that it is not idempotent: If you escape something twice, you get a

horrible-looking mess.

encodeAndEscape()

This method combines ���
���� and ���
���� !�� in one, which is useful when

you're putting unknown strings directly into URLs in HTML.

The SiteSection system

Each part of the web site (as identified by the top-level menu items on the left side) is defined

by one subclass of the SiteSection class. These sections are loaded through the <siteSection>

settings, each of which connect one SiteSection class with its WAR file and the path it will

appear under in the URL.

Each SiteSection subclass defines the name used in the left-hand menu, the prefix of all its

pages, the number of pages visible in the left-hand menu when within this section, a suffix and

title for each page in the section (including hidden pages), the directory that the section should

be deployed under, and a resource bundle name for translations. If you want to add a new

page to the section, you will only need to add a new line to the list of pages with a unique

(within the SiteSection) suffix and a key for the page title, plus a default translation in the

corresponding Translation.properties file. If you want it to appear in the left-hand menu,

update the number of visible pages to n+1 and put your new pages as one of the first n+1

lines.

This is an example of what a simple SiteSection can look like. Note that only the first two

pages from the list have entries in the left-hand menu.

 public HistorySiteSection() {

 super("sitesection;history", "Harveststatus", 2,

 new String[][]{

 {"alljobs", "pagetitle;all.jobs"},

 {"perdomain", "pagetitle;all.jobs.per.domain"},

 {"perhd",

"pagetitle;all.jobs.per.harvestdefinition"},

 {"perharvestrun",

"pagetitle;all.jobs.per.harvestrun"},

 {"jobdetails", "pagetitle;details.for.job"}

	������

 }, "History",

 dk.netarkivet.harvester.Constants.TRANSLATIONS_BUNDLE);

 }

Processing updates

Some JSP sites cause updates when posted with specific parameters. Such parameters should

always be specified in the beginning of the JSP file. All updates of underlying file systems,

databases etc should happen before $����
	���
����� is called, so processing errors can

be properly redirected. The preferred way to process updates is to create a method

processRequest() in a class corresponding to the web page, but under the �����	���
��

package of the corresponding module. This method should take the �
$��
�	��	 and

&'() parameters from the JSP page, together they contain all the information needed from

there.

In case of processing errors, the processing method should call

�� !"	�����
��
���
*��
�#
$��� and then throw a +
��
�����
*��
�#
$�

exception. The JSP code should always enclose the ��
����,�-���	�� call in a try-catch

block and return immediately if +
��
�����
*��
�#
$� is thrown. This mechanism

should be used for "expected" errors, mainly illegal parameters. Errors of the "this can never

happen" nature should just cause normal exceptions. Like in other code, the

��
����,�-���	�� method should check its parameters, but it should also check the

parameters posted in the request to check that they conform to the requirements. Some

methods for that purpose can be found in �� !"	���.

I18n

We use the Apache I18n taglib for most internationalization on the web pages. This means

that instead of writing different versions of a web page for different languages, we replace all

natural language parts of the page with special formatting instructions. These are then used to

look up translations to the language in effect in translation resource bundles.

Normal strings can be handled with the <fmt:message/> tag. If variable paratemers are

introduced, such as object names or domain names, they can be passed as parameters using

<fmt:message key="translation.key"><fmt:param value="<%myVal>"/></fmt:message>.

Note that while the message retrieved for the key gets any HTML-specific characters escaped,

the values do not and should be manually escaped. It is possible if necessary to pass HTML as

parameters.

Dates should in general be entered using <fmt:formatDate type="both">, though a few places

uses a more explicit handling of formats. This lets the date be expressed in the native

������

language's favorite style.

Note the boilerplate code at the start of every page that defines output encoding, taglib usage,

translation bundle, and a general-purpose I18N object. It is important that the translation

bundles from the �
��	
�	� class for the module you're in is used, or incomprehensible

errors will occur.

 pageEncoding="UTF-8"

%><%@taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt"

%><fmt:setLocale value="<%=HTMLUtils.getLocale(request)%>" scope="page"

/><fmt:setBundle scope="page"

basename="<%=dk.netarkivet.archive.Constants.TRANSLATIONS_BUNDLE%>"/><%!

 private static final I18n I18N

 = new

I18n(dk.netarkivet.archive.Constants.TRANSLATIONS_BUNDLE);

%><%

Coding guidelines

edit

This section gives some recommendations for those who want to adapt the current code and/or

send in new plugins. They should be regarded as recommendations, not rules, but following

them will make life easier for both parties.

Sending patches

We're always happy to receive patches, though we may choose not to apply them if the

implemented features go against our purposes or the code quality is too low. Patches should

be made by doing svn diff, either against a released version or against the newest svn. If

sending patches by email, please send them as attachments rather than inline, as mail readers

tend to mess up important formatting.

Coding style

Our overall coding style is based on Sun's guidelines with the following extensions:

Nested class definitions

Declare nested classes as static whenever possible. This avoids an unnecessary link back to

the outer class, and in particular makes it possible to serialized the inner class even if the outer

class is not serializable. The "invisible" link to the outer class found in a non-static inner class

�������

can also lead to unexpected memory leaks, as an inner instance may outlive its outer instance

and keep it artificially alive through its implicit link. Nested class definitions appear at the

beginning of the enclosing class before (static) variables.

Example:

class A {

 public static B {

 // B stuff

 }

 public static Integer ACONST=42;

 ...

}

Variable declarations

The general rule is "put declarations only at the beginning of blocks". We allow one exception

from this rule, namely declarations that 1) initialize the variable and 2) depend on previous

calculations are allowed be further down the block. Example:

void Foo() {

int i1=42;

int i2=0;

i2 = f(i1);

int i3 = g(i2);

}

Miscellaneous

Don't use * import statements, it clutters up the namespace and makes it hard to see what is

intended. Good IDEs can do your imports automatically anyway.

Tabs should never be used in the source files. Most editors can use spaces instead.

Public methods should always check that their arguments follow the JavaDoc restriction with

respect to being null, empty, non-negative etc. The ArgumentNotValid class has a number of

useful methods for this.

JavaDoc is strongly encouraged, as the code might explain what happens, but not the why; the

JavaDoc must describe the intent of the function, including assumptions and invariants as

well as expectations of the arguments.

Exceptions

At the outset of the project, we decided to use undeclared exceptions throughout our code to

�������

avoid to avoid cluttering method definitions with exceptions that are merely passing through,

and to have more flexibility in what exceptions can be thrown in subclasses and interface

implementations. Before you argue this decision, please read the arguments for and

against. Notice that the fact that an exception is unchecked does not mean that you don't need

to document its usage in JavaDoc for your methods, and you can still add it to the throws

clause.

At any point where exceptions enter our code, we catch them and either handle them

immediately or throw one of our exceptions instead, with the caught exception as the cause.

All our exceptions inherit from

�����	
�����	��
��
�������	�
���)�	
�����	*����	�
� , and we try to

keep the number of exceptions at a minimum. At the moment, the following exceptions exist:

dk.netarkivet.common.exceptions.PermissionDenied - used when user rights are not

sufficient to perform an operation, or authentication has failed.

dk.netarkivet.common.exceptions.UnknownID - used when trying to look up an item that

does not exist..

dk.netarkivet.common.exceptions.IOFailure - used for a plethora of unpredictable

file-system or network failures, when no better cause (like PermissionDenied) can be

ascertained.

dk.netarkivet.common.exceptions.ForwardedToErrorPage - used solely in JSP page

support code to abort operations after forwarding to an error page. This should be caught in

the JSP page and processing of the JSP stopped.

dk.netarkivet.common.exceptions.ArgumentNotValid - used in all public methods for

checking basic validity of arguments. Covers and provides methods for checking errors

like passing null references or empty strings. Should not be used to indicate things like

missing files.

dk.netarkivet.common.exceptions.IllegalState - used when something can be in one of

several states, and an operation is performed that is not appropriate for the current state.

dk.netarkivet.common.exceptions.NotImplementedException - used as a placeholder in

methods that are not implemented, or in a few system-specific places for instance trying to

get the number of bytes free on a disk when running on a system that doesn't have that

function implemented.

One standard example of how to catch outside exceptions and handle resource freeing is:

 InputStream in;

 try {

 try {

 in = new FileInputStream(file);

 in.readAll(...);

�
������

 } finally {

 if (in != null) {

 in.close();

 }

 }

 } catch (IOException e) {

 throw new IOFailure("Failed to read file '" + file + "'", e);

 }

Notice how the error message contains the file name in quotes (makes it easier to understand

empty file error), and how the &.+
����� gets the original exception passed in -- it is very

important to never let the original exception vanish.

When it comes to handling our internal exceptions, the general rule is: Avoid catching

exceptions unless you need to catch it. Also expressed as "Never catch an exception that you

do not know how to handle" (with apologies to H. P. Lovecraft).

You need to catch an internal exception if:

Resources must be released that cannot be properly releases with finally. Pay special

attention to constructors.

Your code can fix the problem and try again

Your code must try an alternative execution strategy

Your are implementing a toplevel method like main()

Logging

We use the apache.commons.logging framework for logging, which gives us one unified

interface that can be realized with different underlying systems.

Unit tests

From the very start, a part of our development process has been to use unit tests to validate

our coding. While we have had to learn some lessons about how to properly make unit tests

(some of which lessons are not fully reflected in old tests yet), our overall experience is that

unit tests have been a great boon to the stability of our code. We thus encourage others to

make use of the unit test framework provided with NetarchiveSuite.

What is a unit test?

A unit test is an automatically run test of a delimited part (unit) of the code -- a method. Unit

tests should be small, run quickly and automatically, not depend on external resources, and

not prevent other unit tests from running.

��������

Each method, except for the most trivial getters and setters, should have a unit test. This test

should check that the method does what it claims it does, and that it handles error situations in

the way it claims it does. If the method changes an object's state, that state change should be

checked. If the method temporarily changes an object's state, but claims to change it back, it

should be checked that the state is changed back.

It is important that a unit test tests just one method. Firstly, it limits what goes into the unit

test to a manageable size. Secondly, it provides a focus for what to test and what not to test --

other methods called from within the method need not be tested, as they have their own tests.

Thirdly, it limits the amount of tests that will need changing if the methods interface changes.

Lastly, it reduces the complexity of each test, making them more comprehensible and easier to

maintain.

The JUnit framework helps streamlining unit tests, and is supported by a number of

development environments (IDEs). With it, writing a unit test can be as easy as creating a

method that compares the results of running the tested method against expected values. For

instance, the below would be a reasonable test method for the

/
�
��
�$�%	���$�����	���$���	01��	� method:

public void testSubstring() {

 String testString = "teststring";

 assertEquals("Legal substring should be allowed",

 "str", testString.substring(4, 7));

 assertEquals("Substring from start should be possible",

 "test", testString.substring(0, 4));

 assertEquals("Substring to end should be possible",

 "ring", testString.substring(6, testString.length()));

 assertEquals("Substring of the empty string should be possible",

 "", "".substring(0, 0));

 try {

 testString.substring(-1, 5);

 fail("Substring with negative start should be impossible");

 } catch (IndexOutOfBoundsException e) {

 assertTrue("Error message should contain illegal index value",

 e.getMessage().contains("-1"));

 }

 try {

 testString.substring(7, 5);

 fail("Substring with end before start should be impossible");

 } catch (IndexOutOfBoundsException e) {

 assertTrue("Error message should contain illegal index difference",

 e.getMessage().contains("-2"));

 }

 try {

 testString.substring(1, 100);

 fail("Substring with end too far out should be impossible");

 } catch (IndexOutOfBoundsException e) {

 assertTrue("Error message should contain illegal index value",

 e.getMessage().contains("100"));

 }

}

��������

The standard method name testTestedMethodName is used by JUnit to find tests to run, and

by IntelliJ/Eclipse to allow navigation to and direct execution of individual tests. This test first

checks standard (successful) usage, on examples of increasing complexity, then goes on to

check the error scenarios, making sure that the right exception with the right message is

thrown. The
����	*-�
��,
����	���� and �
�� methods are provided by the

TestCase class in JUnit, and take care of formatting an error message in a readable manner.

As an example, here is the (first part of the) output of running the testing with the third

assertEquals only substringing out to 	��	%	���$����$	���121':

junit.framework.ComparisonFailure: Substring to end should be possible

Expected:ring

Actual :rin

 at

dk.netarkivet.tools.UploadTester.testSubstring(UploadTester.java:44)

...

Why would you want to do unit tests?

Two words: Saving time. Unit tests increases your development time slightly, but decreases

your debugging time significantly. Perhaps more importantly, it reduces the number of bugs

that make it into the final code, decreasing customer dissatisfaction, support costs, re-release

effort etc.

Unit tests provide a structured and simple way to continuously test your code. Large-scale

(integration) tests of the entire system or significant subsystems are not good at pinpointing

the reasons for failure, or at checking all possible modes of use of every single method.

Large-scale tests typically are only possible late in the development cycle, when significant

amounts of code have been written. Unit tests allow you to test much smaller parts of the code

at a much earlier stage, letting you pinpoint errors with great accuracy and easing the task of

testing extreme cases and error conditions.

A less obvious, but possibly more important, reason to do unit tests is that you get a clearer

idea of what you code does (or should do). It's all too easy without unit tests to write "a

method that extracts the domain name from a URL" in a way that seems to work, but that fails

to even be clear about what a domain name is or what happens if the URL has no domain

name. When writing the unit test, you have to ask yourself "how can I test what this method

does?", and answering that question forces you to answer, in very exact terms, the question of

"what does this method do?". Writing the unit test for the domain name extractor would raise

questions of whether the domain name is the full hostname or a subset, which protocols are

accepted (https? mailto? dns?), and importantly, how it handles malformed URLs or other bad

input.

��������

A third reason to create and maintain unit tests is that it provides a safety net for making

changes to the code. In the Netarkivet project, we belatedly realized that XML doesn't scale to

millions of files very well, and decided to move to using a proper database instead. The

database involves 17 interrelated tables. The changeover was done in just a few man-weeks,

partly because the data access was abstracted using DAO classes, but also significantly

because the usages and assumptions were encoded in unit tests. Whenever code is changed,

unit tests can catch unexpected side effects.

When do you write the unit tests?

In the Netarkivet project, we have used a code-unit-tests-first method of implementation. It

may seem strange to test something that doesn't exist yet, but such code is actually the easiest

to write unit tests for -- there is no implementation there to lead your thinking into specific

paths and make you overlook the special cases that cause bugs down the line. Typical method

implementation has three steps:

Create the API as a stub method that is guaranteed not to work. 1.

Write a unit test that uses that API -- this test will fail. 2.

Implement the body of the API and see that the unit test passes. 3.

Say that we want to create the method mentioned above that extracts domain names from

URLs. The first step is to create the API and make sure it can compile:

public class DomainExtractor {

 /** This method extracts domain names from URLs.

 *

 * @param URL A string containing a URL, e.g.

http://netarkivet.dk/index.html

 * @returns A string that contains the domain name found in the URL,

e.g. netarkivet.dk

 */

 public String extract(String URL) {

 return null;

 }

}

Next, we create a test class for this method (using JUnit) and implement tests for the

functionality. When implementing tests, we should be in the most evil mindtest possible,

seeking any way we can think of to make the method do something other than it claims it

does.

public class DomainExtractorTester extends TestCase {

 public void testExtract() {

 DomainNameExtractor dne = new DomainNameExtractor();

 assertEquals("Must extract simple domain", "netarkivet.dk",

 dne.extract("http://netarkivet.dk/index.html"));

��������

 assertEquals("Must extract long domains", "news.bbc.co.uk",

 dne.extract("http://news.bbc.co.uk/frontpage"));

 assertEquals("Must not depend on trailing slash", "test.com",

 dne.extract("http://test.com"));

 assertEquals("Must keep www part", "www.test.com",

 dne.extract("http://www.test.com"));

 }

}

The
����	*-�
�� method inherited from test case takes three arguments: An explanatory

message that tells us what we're testing for, the value that we expect to get from the test, and

the actual value that the test gave us (in this case the return value of a method call).

At this point, we may realize that the method API does not specify what happens if we give it

something that is not a URL, like "www.test.com". Does it throw an exception? Does it return

null? Does it return some arbitrary part of the argument? Specifying error behaviour is as

much a part of specifying the methods behaviour as saying what it does on the "good" cases.

Also, what if the URL is not an HTTP URL, like " mailto:owner@test.com"? Possibly we

were really just thinking of HTTP URLs, but then we need to specify that, too. These

realizations should go into the javadoc at once, and the test should be expanded to check them

(not shown here).

Tests should be written in such a manner that each test checks one thing (starting with the

cases that would obviously work), and that no two tests check the same thing (e.g. checking

both the URLs " http://test.com/foo" and " http://test.com/bar"). Knowing exactly what a

"thing" is is not always trivial. To some extent, it can be derived from the API description, but

it also depends on what the implementation will look like. An implementation using regular

expressions would behave very differently from one splitting by characters, for example.

Thus, the first tests should check the basic functionality, but then more can be added during

implementation as special cases that might go wrong are noticed.

When the test is written to the point where basic functionality (and error cases) is tested, the

test is run. This is merely a sanity check that the test compiles and works (for complex tests,

there may be some setup prior to the first result being checked). The test, of course, will fail.

This is clearly because the implementation is missing, so now we can go on to

implementation.

Implementation will frequently seem very trivial once the tests are written. During the test

writing, a lot of the special cases and error behaviours got defined, so writing the code that

implements this is a much more straight-forward task. It can sometimes be beneficial to run

the unit tests during implementation, when you think you've implemented some of the parts

that are checked first. Also, even with a good unit test, you may still run into cases where

redesign is needed, or where other code prevents you from doing what you thought you could

(say, if a URL decoder library is used, and it doesn't provide you the functionality you were

��������

hoping for). Whenever the API is changed, the unit test should change too, reflecting this

change -- otherwise it doesn't test that change.

Once the implementation is done, the unit test of course must pass.

This seems complex, why would you want to code unit-test-first?

The above example might look like there's a lot of coding to unit tests, and I cannot pretend

that there isn't some coding. However, two factors ameliorate it: Firstly, a lot of the

framework of the tests can be provided by a good IDE, secondly, unit test code is not

production code and does not need to meet as rigorous a standard -- this can even make it

quite fun to make unit tests, firing off one mean example after another.

Writing the unit tests before the implementation has the very real benefit of ensuring that the

unit test gets written. All too often, once a method is implemented, adding more testing to it

seems like a waste of time -- after all, you can just look at the implementation and see that it

works, right? Our experience has shown that if the unit tests are left to be an afterthought,

they simply do not get created.

Perhaps the greater benefit of writing the tests early is the way it forces you to think about

what you're doing. Many programmers have an urge to get "down to the real stuff" and

implement things as soon as possible. Starting with the unit tests allows the programmer to do

some coding at once, but simultaneously forces him or her to think about the design before

committing to implementation. Updating the API or extending the documentation while

writing the first unit test is the rule rather than the exception. In particular, since the design

choices found by making unit tests cannot be embodied in code yet, there is a greater tendency

towards putting them in the Javadocs where they belong. One could say that there should be a

correspondence between what the documentation states and what the unit tests test for -- if the

tests test more, there is undocumented functionality, if they test for less, they are not

complete. The unit tests come to do for code what double-entry bookkeeping does for

accounting: Provide a way to double-check correctness.

A third advantage of doing unit tests first is that it forces the programmer to break the design

down to manageable pieces. If a method is too complex to test, it is probably too complex to

debug. If a method is hard to test due to complex interrelations with other methods, those

same interrelations would be a source of hard-to-find bugs. On the other hand, a method that

is easily tested can also more easily be reused in other contexts, as its behaviour is well

known.

What are important things to keep in mind when making unit tests?

�	������

Make the test as simple as possible, but not simpler. Each test should test only one method,

not the methods that the tested method calls. Look at what the method /itself/ does and test

that. Also, check what the method promises in its JavaDoc and disregard that which is

promised by those methods called in turn by the tested method.

Tests should take a short time to run, typically a fraction of a second. The Netarkivet

system at the time of writing has 899 unit tests, and takes over three minutes to run on a fast

development machine -- which is too long for frequent use. The longer the tests take to run,

the less frequently they will be run. On the flip side, don't do "small-scale" optimizations that

might save one or two instructions -- you can't tell what the Java run-time system optimizes

anyway.

Ideally, you run the unit tests as a matter of course during development, not as an

afterthought, and slow tests are a hindrance for that. In many cases, especially with new

code, you can run a subset of tests most of the time, but when changing old code, there

could be cascading changes in other tests. These changes are important to catch, not only

because failing tests would distract other coders, but because they indicate a dependency

that might not be realized otherwise. Oftentime, when a test in another area of the project

starts failing, the cause can be traced back to unclear design or lacking documentation.

Unit tests are much more useful when they all pass. If somebody has left some tests failing,

it becomes difficult to see the effects of changing the code. If all tests pass when you start

coding, you know that any tests that start failing are due to your changes.

You cannot always get your unit tests passing by the time you have to commit. A halfway

finished test should not disturb the other testers, but should show up on reports. We have

developed a system to allow developers to skip other developers' unfinished tests, but also

have a list of the skipped tests which must be kept short and preferably contain a reason why

the test is skipped. We do this by having a setting "dk.netarkivet.testutils.runningAs" on the

JVM, which tells us who should be considered running the test. In an unfinished test, a check

is added at the start, and if we're not running as either the developer mentioned in the check or

"all", we skip the test.

You should have a goal for coverage and measure against it. Tools like Clover allow

automatic calculation of which lines are reached by unit tests, summing up coverage by lines,

statements and control points over classes, packages and the whole project. Measuring the

coverage allows you to spot when you're slacking off on the testing, and can pinpoint critical

areas that are not tested. In Netarkivet, we have a goal of 80% coverage of statements, and

most of the time have been at 75% or higher. The non-covered part is typically error

conditions and simple getter/setter methods. The former, while important to test, are difficult

to set up correctly if you have error checking against "impossible" situations or exceptions

�
������

caused by underlying libraries.

Always have a message on the
����	3�� or �
���� call. Without a failure message,

you cannot tell what you're testing for -- you end up testing things outside the target method

or retesting the same thing in different contexts. The message should tell you what you're

expecting to happen, e.g.

����	*-�
���4%�
���1$�	1��
$��
��1������1�
�1�-�
��1�

	1
�1��$
	���1������401���1&�
$��
���5�501'�5�01
��-�	�2'�5��

Not only does that make it easier to see what the problem is when the test fails, it also clarifies

what the test actually tests, reducing the risk of redundant tests. Implicit in this should be to

always test the results of an operation -- just running a method doesn't prove anything but that

it doesn't throw an exception.

Some objects can take a long time to convert to a string, so including them in every message

to
����	3�� can slow down the unit tests unacceptably. This can be ameliorated if you

make your own test utility classes that define new
����	3�� methods, where you can

delay the conversion until you know that the test has failed. Remember that each call to

����	3�� is vastly more likely to pass than to fail, so reading an entire file into memory

for each such call would slow things down a lot.

Many objects don't live in isolation, but depend on other objects and sometimes

(unfortunately) on static state. A typical example of static state is a Singleton class. Even a test

that does not make use of these other objects or state directly may cause them to be created as

part of object construction. Any such external object or state must be reverted to its

original at the end of the test. JUnit provides a guarantee that the 	�
�6
���� method is

called at the end of a test, whether it succeeded, failed, or threw an exception (except if the

AssertionFailed exception gets caught, which you should never do!). The 	�
�6
����

method, which in most cases will mirror the ��	"��� method, must ensure that the test has

had no side-effects. Unfortunately, this is not always an easy job, as some side-effects can

happen far away from the object itself and not be noticed until another test, far down the line,

tries to use the same resource. Modular design and the use of mock objects can help isolate

the test from side-effects, and usually makes the test easier to write, too.

Make sure to vary the samples that you test against, to avoid caches or cut-and-pasted code

returning an old value that inadvertently passes for good. Also remember to make your test

samples as evil as possible, doing the most obnoxious thing you can possibly do /within the

parameters set/. This could include using empty strings, string with parts of regular

expressions or other markup, integers that may overflow or underflow, etc.

While unit tests can point you in the direction of cleaner design, avoid the temptation of

making design decisions solely for the benefit of testability. Use the unit tests as an

indicator of potentially problematic design, not as the reason for the design. This includes

��������

setting access rights to what makes sense in the product code, even if it makes it harder to unit

test. Java's security model is not exactly helpful here -- having a ������ keyword would

have made it much, much easier to test. This can be handled somewhat by using reflection (all

Field and Method objects can be made accessible with the setAccessible method), but it is

more cumbersome. It could be interesting to extend a compiler with a @Friend annotation that

makes the compiler convert outside access to private members into calls to the reflection API.

Don't test your setup. If your setup statements (that is, statements required to make ready for

testing the method in question) are so complex you need to assert their results, you're

probably doing something wrong. Look into whether you are testing more than just the one

method, or if the method itself needs to be split into several methods.

Don't try to prove a negative. It's tempting to test that a method call don't change things it's

not supposed to, but you can't really do that. Any method can change all manner of things, if it

really wants to, and you cannot check them all. Only if the JavaDoc or other design contract

explicitly states that some parts are unchanged should that be checked.

How do you make a unit test for X?

We've run across many different kinds of code to make unit tests, and found solutions to at

least some of them.

Interaction with external resources

When writing code that interfaces with external resources, the easiest way to test that your

code works (don't attempt to unit test an Oracle database installation:) is to provide a mock

object that emulates the resource. If you code is cleanly written, this is likely to be easy. A

mock object is an object that can be used instead of the real thing, but has much reduced

functionality. For instance, it may give pre-calculated answers to the specific calls that the

unit tests make, or it may give dummy answers and count how many times it has been

called. A generic system for mock objects is available at mockobjects.com.

Exceptions

Don't catch exceptions unless either the test should throw one, or catching is required for

cleanup. The latter should be very rare, as cleanup properly is the province of

	�
�6
����. Particularly, accidentally catching the exception thrown by
����	3��

or �
���� will abort the tests with no explanation as to why. When a method specifies

that it throws exceptions under certain circumstances, the correct way to test it is this:

 try {

 myInstance.doWork(somethingAwful("green"));

 fail("Should have thrown GotSomethingAwfulException when given

something awful to work on.");

��������

 } catch (GotSomethingAwfulException e) {

 assertEquals("Exception should remember color of awful thing",

"green", e.getColor());

 }

Trying to catch other exceptions leads to extra code with no gain, confusion about the

interface, tests that fail in intractable ways, and incomprehensible tests. The above style

should be used exactly for when the method should throw an exception according to its API.

`System.exit`

While calling %��	������	�� is frowned upon in server applications, you will also

sometimes want to test command-line tools or other systems where %��	������	��

may reasonably be called. We have created a standard class that uses a SecurityManager to

catch %��	������	�� calls, which would otherwise abort the entire test run. This can

be extended to indicate whether a %��	������	�� call was expected or not.

What things are unit tests not good for?

There Is No Silver Bullet, of course. Unit tests can help you get better code, but it can only go

so far. There are several types of problems that are difficult or even impossible to really test

for in unit tests, and such untestable parts should be noted for testing in larger-scale tests.

Parallellization

Interactions of multiple threads, or worse, multiple processes, are difficult at best to test.

Many of our attempts have ended with tests that pass only occasionally, or that sometimes

hang the test system. We have a few ideas that work, though:

Make sure the threads have recognizable names, and if the threads are expected to

terminate, wait in a loop till they have. Make sure to have a timeout on it, though.

Complex interactions

Despite the best design efforts, some errors only occur when multiple components are put

together. Even if each component does its part perfectly well, misunderstandings of

designs and assumptions can cause unexpected behaviour. This is properly the field of

integration tests. Some errors also come up because the unit test writer didn't think of every

possible case, but in that case the unit test can later be extended to cover other cases.

External resources

Interactions with name servers, databases, web services or other resources that either are

slow or unpredictable should be avoided, as it complicates the setup and makes spurious

errors more likely. Such resources can sometimes be replaced with mock-ups that give the

answers that the tested methods expect.

Hardware-dependent problems

�
������

Some bugs only occur on some platforms or when specific hardware is in use. For

instance, Windows has mandatory locking that can make cause the +��������	���

method to fail until the lock is released. This is not a problem under Unix, so our unit tests

never attempted to test that problem. Much as Java would like to be truly

platform-independent, there are always some differences.

Scaling

Scalability issues are typically hard to test for within the time constraints of unit tests.

Practical matters

All our unit tests are placed under the 	��	� directory (along with some integrity tests),

using a directory structure that mimics the classes they test (such that they can access

package-private members). Each package contains an 3���	��%��	� class, where X is the

last part of the package name. This class assembles the tests in that package as one bundle of

tests, but also allows the tests to be run as a separate suite. Typically, each package also has a

���	&��
 class that contains various useful constants (names of test data files, for instance),

and a �
	
 directory containing all test data for that package (but not its subpackages). The

tests for a class 3 are placed in a class 3���	��, with each method �

7
��� being tested

by one or more methods whose name begins with 	��	+

7
� (incidentally, this format is

understood by the UnitTest IntelliJ plug-in).

Private methods

Private methods are just as deserving as public methods of being tested, but due to Java's lack

of a "friend" concept, they cannot be directly accessed from other classes. Instead, we have a

utility class ,�����	"	��� that provides methods for accessing private methods as well as

private fields (for easier setup). An example of using reflection for tests could be:

 hc = HarvestController.getInstance();

 Field arcRepController = ReflectUtils.getPrivateField(hc.getClass(),

 "arcRepController");

 final List<File> stored = new ArrayList<File>();

 arcRepController.set(hc, new MockupJMSArcRepositoryClient(stored));

 Method uploadFiles = ReflectUtils.getPrivateMethod(hc.getClass(),

 "uploadFiles", List.class);

 uploadFiles.invoke(hc, list(TestInfo.CDX_FILE, TestInfo.ARC_FILE2);

 assertEquals("Should have exactly two files uploaded",

 2, stored.size()); // Set as sideeffect by mockup

 ...

JUnit assertions

JUnit comes with a base package of useful assertions, but we have over time crystallized out

��������

more assertions. These all live in the �����	
�����	�	��	�	��� package, which is

placed together with the tests. Along with a number of miscellaneous support utilities and

mock-ups (described below), there are the following new asserts in the testutils package:

ClassAsserts

The assertions in here (
����	�
�+
�	
�� �	�
�,
����	%��$��	
�, and

����	#���
	��
��	���	
�) pertains mainly to singleton objects, of which there is

a small handful in the system. The
����	*-�
�� method tests via reflection that the

�-�
�� method obeys the requirements from .�/��	��-�
��.

CollectionAsserts

The
����	&	��
	
�*-�
�� and
����	!��	*-�
�� methods provide more

detailed messages about differences in iterators and lists than just doing �-�
��. The

����	&	��
	
�)
���*-�
�� is for specific use by

�
����	6�����	�
�6�.���	��.

FileAsserts

These methods help inspecting test results that reside in files. The

����	+���)�����.�!���� method checks the number of lines in a file without

holding the whole file in memory. The other methods are utility methods that provide more

informative error messages for tests of whether files contain strings or match regular

expressions.

MessageAsserts

The one assert method here checks the generic JMS message class NetarkivetMessage for

whether a reply was successful and outputs the error message from it if not.

StringAsserts

The three utility methods here are similar to those of +��������	� in that the provide

better error messages for string/regexp matching.

XmlAsserts

These assertions help test XML structures. The
����	*�����	�
��		����	� and

����	*�����	�
�)
	�		����	� check for the presence of a given attribute and

whether it does or does not have a given text. Similarly, the

����)
)
��8�	�3#
	� and
����)
��8�	�3#
	� methods test whether or

not a node exists in a document corresponding to a particular XPath string, and the

����)
�����	&�3#
	� checks if an existing node contains a specific test.

Mock-ups

As using objects in their normal contexts became more and more difficult in an increasingly

��������

complex system, we turned to [[][mock objects]] to simplify unit tests. Additionally, we have

standardized some of our most common set-up/tear-down procedures into objects of their

own.

...

Settings

Almost all configuration of NetarchiveSuite is done through the

�����	
�����	��
��
��%�		��$� class. It provides a simple interface to the

��		��$����� file as well as definitions of all current configuration settings. The

��		��$����� file itself is an XML file with a structure reminiscent of the package

structure. All settings can also be set on the command line by using the 26 option, this will

override anything listed in the ��		��$����� file.

Settings are referred to inside NetarchiveSuite by their path in the XML structure. For

instance, the �	
��,�	���� setting in
�����
��	
�������	 under �
��
� is

referred to with the string

4��		��$���
��
��
�����
��	
�������	��	
��,�	����4 . However, to

avoid typos, each known setting has its path defined as a String constant in the %�		��$�

class, which is used throughout the code.

To add a new general setting, the following steps need to be taken:

The %�		��$� class should get a definition for the path of the setting. 1.

The XML Schema for the ��		��$����� should be updated to allow the new setting. 2.

An XSLT script should be made to add the setting to current ��		��$����� files. 3.

��		��$����� files should be updated (including those in the unit tests). 4.

... add description of XML Schema options for pluggable parts ...

Pluggable parts

edit

Some points in NetarchiveSuite can be swapped out for other implementations, in a way

similar to what Heritrix uses.

...

��������

How pluggability works

... factories ...

...request for suggestions on pluggability areas ...

RemoteFile

The RemoteFile interface defines how large chunks of data are transferred between machines

in a NetarchiveSuite installation. This is necessary because JMS has a relatively low limit on

the size of messages, well below the several hundred megabytes to over a gigabyte that is

easily stored in an ARC file. There are two current implementations available in the default

distribution:

FTPRemoteFile - this implementation uses one or more FTP servers for transfer. While

this requires more setup and causes extra copying of data, the method has the advantage of

allowing more protective network configurations.

HTTPRemoteFile - this implementation uses an embedded HTTP server in each

application that wants to send a RemoteFile. Additionally, it will detect when a file transfer

happens within the same machine and use local copying or renaming as applicable. For

single-machine installations, this is the implementation to use. In a multi-machine

installation, it does require that all machines that can send RemoteFile objects (including

the bitarchive machines) must have a port accessible from the rest of the system, which

may go against security polices.

Both implementations will detect when 0 bytes are to be transferred and avoid creating

unnecessary file in this case.

Describe interface...

JMSConnection

The JMSConnection provides access to a specific JMS connection. The default

NetarchiveSuite distribution contains only one implementation, namely

JMSConnectionSunMQ which uses Sun's OpenMQ. We recommend using this

implementation, as other implementations have previously been found to violate some

assumptions that NetarchiveSuite depends on.

Note that this plug-in uses a different model for specifying which class to use: Instead of

naming the class to load, we name an suffix that will be added after

��������

dk.netarkivet.common.distribute.JMSConnection. Thus to use the JMSConnectionSunMQ, the

settings field settings.common.jms.class must be set to SunMQ. This is for historical reasons

only.

Describe interface...

ArcRepositoryClient

The ArcRepositoryClient handles access to the Archive module, both upload and low-level

access. There are two implementations in the default distribution:

JMSArcRepositoryClient - this is a full-fledged distributed implementation using JMS for

communication, allowing multiple locations with multiple machines each.

TrivialArcRepositoryClient - as the name implies, this is the simplest possible

implementation that can actually work: it stores all files in a single directory. This is usable

for testing and small-scale harvests, or as the basis for a more complex implementation.

Describe interface...

IndexClient

The IndexClient provides the Lucene indices that are used for deduplication and for

viewerproxy access. It makes use of the ArcRepositoryClient to fetch data from the archive

and implements several layers of caching of these data and of Lucene-indices created from the

data. It is advisable to perform regular clean-up of the cache directories.

Describe interface...

DBSpecifics

This DBSpecifics interface allows substitution of the database used to store harvest

definitions. There are three implementations, one for MySQL, one for Derby running as a

separate server, and one for Derby running embeddedly. Which is these to choose is mostly a

matter of individual preference. The embedded Derby implementation has been in use at the

Danish web archive for over two years.

Describe interface...

Database

��������

Developer Manual (last edited 2007-07-17 14:03:55 by KaareChristiansen)

edit

How the harvest database is organized

