
NetarchiveSuite Installation Manual

Printer friendly version

Contents

Introduction1.

Configuration basics2.

Choose an installation scenario3.

Choose a type of database4.

Choose a JMS broker5.

Choose the set of machines taking part in the

installation/deployment

Configure monitoring (allocating

JMX and RMI ports)

1.

6.

Additional configurations

Configure notifications1.

Select a file datatransfer method2.

Configure job-generation3.

Configure Domain Granularity4.

Configure Heritrix process5.

Configure web page look6.

7.

The actual deployment of the NetarchiveSuite

Standard commandline settings

The CLASSPATH1.

Logging2.

JMX settings3.

Select the appropriate

settings.file for the

application

4.

JVM options5.

1.

Admin machine

Starting the

HarvestDefinitionApplication

1.

Starting the

BitarchiveMonitorApplication

instances

2.

2.

Harvester machines3.

Bitarchive machines4.

Access servers5.

8.

Starting and stopping the NetarchiveSuite

NetarchiveSuite application startup

order

1.

NetarchiveSuite application

stopping order

2.

9.

Monitoring an running instance of

NetarchiveSuite

10.

Appendix A : Installing external software

Installing and configuring a JMS broker

Obtaining JMS1.

Installing the JMS broker2.

Configuring the JMS broker3.

Starting and stopping JMS4.

1.

How to empty queues1.

Installing and configuring FTP2.

Starting and stopping a Proftpd server3.

Appendix B : Configurable settings in the

NetarchiveSuite

Appendix C : Plugins in the NetarchiveSuite

Introduction

edit

This manual describes how to install and configure the NetarchiveSuite web archive

software package. It includes description of how to obtain and install required libraries, how

to install the software on separate machines, what command line options and configuration

file changes are necessary, and how to start the programs. It then goes on to explain the

other parameters available for tuning the behaviour of NetarchiveSuite. It does not explain

how to extend the functionality of the system (see the Developer Manual for this) or how to

use the running system (see the User Manual: for this).

The intended audience of this manual is system administrators who will be responsible for

the actual installation and setup of NetarchiveSuite as well as technical personnel

responsible for proper operation of NetarchiveSuite. Knowledge of Unix system

administration is expected, and some familiarity with XML and Java is an advantage.

Configuration basics

edit

Almost all configuration of NetarchiveSuite applications is done by changing the

settings.xml file, which by default is located in the conf directory. This file is

organized in a hierarchy with settings for the various modules and applications having their

own parts. All settings can also be set from the command line by specifying the -D option

with a dotted path of the XML path. For instance, using the command line option

-Dsettings.common.tempDir=/tmp corresponds to changing the XML file to read

(in part)

<settings>
 <common>
 <!-- Common temporary directory for all applications. -->
 <tempDir>/tmp</tempDir>
...

Using command line options override whatever is set in the settings.xml file, but

allows only one value per setting. In the settings.xml file, you can specify several

values by repeating a section. For instance,

Whether to use a settings.xml file per application or per machine or just have the same

file for all machines is up to you. In this manual, we will assume a shared settings.xml
file for all machines and define the settings that vary using command-line options.

Depending on how you choose to perform your installation, you may want to have a

different approach.

Choose an installation scenario

edit

NetarchiveSuite can be installed in a number of different ways, with varying numbers of

machines on different sites. There is a number of separate applications in play, most of

which can be put on separate machines as needed. To keep clear what is necessary for

which setups, we will consider the following types of setup:

A. Single-machine setup. This corresponds to the setup used in the Quick Start

Manual, where all applications run on the same machine, and file transfer can be done

simple by copying files locally. It is the simplest setup, but does not scale very well.

Note that the scripts used in Quick Start Manual resets the system at every restart,

including deleting all harvested material. Obviously, this is not the intent for a

running installation, so those scripts cannot be used in production environments as

they are.

B. Single-site setup. In this scenario, multiple machines are involved, necessitating

file transfer between machines and multiple installations of the code. However, the

machines are expected to be within the same firewall, so port setup should be no

problem.

C. Single-site setup with duplicate archive. This expands on the single-site setup

in that more than one copy of the archives are used, using the concept of separate

"Locations" to indicate the duplicates.

D. Multi-site setup. When more than one site is involved, separated by firewalls,

extra issues of opening ports and specifying the correct site come into play. This is

the most complex scenario, but also the more secure against systematic errors,

hacking, and other disasters.

Setups C and D involves having a distributed bitarchive. In these setups we have the the

bitarchive distributed on at least two Locations, here called LocationA and LocationB. One

of them must be designated as the Location that by default executes batch jobs -- typically

the Location with the greater amount of processing power. These Location informations

must be written to the general settings.xml before deployment:

<arcrepository>
 ...
 <!-- The names of all bit archive locations in the
 environment, e.g., "LocationA" and "LocationB". -->
 <location>
 <name>LocationA</name>
 </location>
 <location>
 <name>LocationB</name>
 </location>
 <!-- Default bit archive to use for batch jobs (if none is
specified) -->

 <batchLocation>LocationA</batchLocation>
</arcrepository>

Choose a type of database

edit

The NetarchiveSuite can use three types of database:

embedded Derby database (default)

external Derby database

MySQL database

By default, the NetarchiveSuite uses an embedded Derby. If you choose this option, you

only have to do this before you launch the NetarchiveSuite applications:

cd <installationdir>/harvestdefinitionbasedir
unzip fullhddb.jar

If you want to use an external Derby, you have to do the following

start Derby separately:

cd "directory with the extracted database" (e.g.

<installationdir>/harvestdefinitionbasedir)

java -cp derbynet.jar org.apache.derby.drda.NetworkServerControl start [port]

The default port is 1527.

For the NetarchiveSuite to use this external database, you

set the database.specificsclass to

dk.netarkivet.harvester.datamodel.DerbyServerSpecifics

set the database.url to jdbc.derby://localhost:1527/fullhddb (substitute the server host

for localhost, and 1527 for correct port)

More details on using Derby as a server are available on the derby pages.

If you want to use a MySQL database, you have to

set the database.specificsclass to

dk.netarkivet.harvester.datamodel.MySQLSpecifics

set the database.url correctly: jdbc:mysql://localhost/fullhddb?user=root&

password=secret (substitute the server host for localhost, and

Install the MySQL database (v. 5.0.X) on a machine of your choice

Download a mysql-connector-java-5.0.X-bin.jar from http://dev.mysql.com

/downloads/connector/j/5.0.html

This jar must then be added to the classpath for the applications, that accesses the database:

GUIApplication and HarvestTemplateApplication

You can do this manually, when starting these applications. Alternatively, you can add the

mysql-connector-java-5.0.X-bin.jar to the lib/db directory, and modify build.xml

accordingly:

Add a line "db/mysql-connector-java-5.0.X-bin.jar" to the property 'jarclasspath' just

below the line "db/derby-10.1.1.0.jar".

Add a line "<include name="db/mysql-connector-java-5.0.X-bin.jar"/>" below

<include name="db/derby-10.1.1.0.jar"/>

You can then generate a new NetarchiveSuite zipball with "ant zipball".

This assumes, that you have downloaded the source distribution of the NetarchiveSuite.

Choose a JMS broker

edit

The NetarchiveSuite requires the use of a JMS broker. The installation and startup of a

JMSbroker is described in Appendix A. In the below extract of conf/settings.xml, the

JMSbroker resides at machine1.domain, and listens for messages on port 7676. You must

also select a JMS environmentName. This allows you have more than one running

installation of the NetarchiveSuite, each with its own environmentName, and makes it easy

to cleanup the JMS queues associated with a given environmentName. The NetarchiveSuite

currently only supports one kind of JMS broker, so only the 'broker','port', and

'environmentName' can be changed.

<jms>
 <!-- Selects the broker class to be used. Must be a subclass of
 dk.netarkivet.common.distribute.JMSConnection.-->

<class>dk.netarkivet.common.distribute.JMSConnectionSunMQ</class>
 <!-- The JMS broker host contacted by the JMS connection -->
 <broker>localhost</broker>
 <!-- The port the JMS connection should use -->
 <port>7676</port>
 <!-- The name of the environment in which this code is running,
e.g.
 PROD, RELEASETEST, NHC,... Common prefix to all JMS
channels
 -->
 <environmentName>PROD</environmentName>
</jms>

Firewall note: The machine that runs the JMS broker must be accessible from all machines

in the installation on not only port 7676, but also port 33700 (from RMI).

Choose the set of machines taking part in the

installation/deployment

edit

When you have chosen your setup, you must decide on the number of machines, you want

to use in the deployment of the NetarchiveSuite. For setup A, the answer is of course one.

For the setup B-D, the answer is more complicated.

At the Danish installation, we operate with 4 kinds of machines:

- Admin machine (one server): Here we deploy one or more

BitarchiveMonitorApplications (one for each Location),

one ArcrepositoryApplication, and one HarvestDefinitionApplication (running

the GUI, and scheduler). The latter application is the only application using a

database.

- harvester machines (one or more): Here we deploy the

HarvesterControllerApplications and their associated SideKicks.

- bitarchive machines (one or more): These machines only run one

BitarchiveApplication each.

- access servers (one or more): On these machines, we have the

ViewerproxyApplication enabling us to browse in already stored webpages,

and the IndexServerApplication. The latter must only be installed on one of the

access-servers, as there can only be one in the system,

Apart from the HarvestControllerApplications and their associated SideKicks, there is no

requirement that the applications are placed like this, but we will use it as an example

throughout the rest of the manual. In the standard setup used in our test-environment, we

have 9 machines:

1 bitarchive server (on Location A)
2 bitarchive servers (on Location B)

1 admin machine (placed on Location A)
2 harvester-machines (placed on Location A)
2 harvester-machines (placed on Location B)

1 access server (placed on Location A)

Configure monitoring (allocating JMX and RMI ports)

Monitoring the deployed NetarchiveSuite relies on JMX (Java Management Extensions).

Each application in the NetarchiveSuite needs its own JMX-port and associated RMI-port,

so they can be monitored from the NetarchiveSuite GUI, and using jconsole (see below).

You need to select a range for the JMX-ports. In the example below, the chosen

JMX/RMI-range begins at 8100.

Note: The RMI-ports for a certain JMX-port are assumed to be JMX-port-number + 100

Firewall Note: This requires that the admin-machine has access to each machine taking part

in the deployment on ports 8100-8300.

You need to select a password for the JMX monitorRole, and replace the string

"JMX_MONITOR_ROLE_PASSWORD_PLACEHOLDER" with the selected password

in two files: the conf/jmxremote.password, and the settings file used. When launching the

applications we define the path to the JMX passwordfile on the commandline:

-Dsettings.common.jmx.passwordFile=INSTALLATION_DIR/conf

/jmxremote.password

The JMX-ports are registered in a special settings file used by the

HarvestDefinitionApplication (GUI/Scheduler) in the monitor section of the file

monitor_settings.xml:

<settings>
 <monitor>
 <jmxMonitorRolePassword>SELECTED_PASSWORD</jmxMonitorRolePassword>
 <numberOfHosts>NUMBER_OF_MACHINES_INVOLVED</numberOfHosts>
 <host1>
 <name>MACHINE_1</name>
 <jmxport>8100</jmxport>
 <jmxport>8101</jmxport>
 </host1>
 ...
 <hostX>
 <name>MACHINE_X</name>
 <jmxport>8100</jmxport>
 <jmxport>8101</jmxport>
 </hostX>
 </monitor>
</settings>

Note that changes in this special settings file will be detected in the running systems. That

makes it possible to deploy more bitarchive machines or harvesters in the running system

without restarting the scheduler.

Additional configurations

edit

Configure notifications

NetarchiveSuite can send notifications of serious system warnings or failures to the

system-owner by email. This is implemented using the Notifications plugin, see Appendix

C. Several settings in the settings.xml must be changed for this to work:

The setting settings.common.notifications.receiver (recipient of notifications),

settings.common.notifications.sender (the official sender of the email, and receiver of any

bounces), and settings.common.mail.server (the proper mail-server to use):

<common>
 ...
 <notifications>
 <!-- Which class to instantiate to handle error notifications -->

 <class>dk.netarkivet.common.utils.EMailNotifications</class>
 <!-- The receiver of emails -->
 <receiver>example@netarkivet.dk</receiver>
 <!-- The stated sender of emails (and receiver of bounces)-->
 <sender>example@netarkivet.dk</sender>
 </notifications>
 <!-- Settings for sending email. Currently mail is only used for
email notifications. -->
 <mail>
 <!-- The email server to use -->
 <server>examplesmtpserver.netarkivet.dk</server>
 </mail>

Alternatively, the class dk.netarkivet.common.utils.PrintNotifications
can be used. This will simply print the notifications to stderr on the terminal.

<common>
 ...
 <notifications>
 <!-- Which class to instantiate to handle error notifications -->
 <class>dk.netarkivet.common.utils.PrintNotifications</class>
 </notifications>

Select a file datatransfer method

You can currently choose between FTP, HTTP, or HTTPS as the filetransfer method. The

HTTP transfer method uses only a single copy per transfer, while the FTP method first

copies the file to an FTP server and then copies it from there to the receiving side.

Additionally, the HTTP transfer method reverts to simple filesystem copying whenever

possible to optimize transfer speeds. However, to use HTTP transfers you must have ports

open into most machines, which some may consider a security risk. The HTTPS transfer

method meets this problem by having the HTTP communication secured and encrypted. To

use the HTTPS transfer method you will need to generate a certificate that is needed to

contact the embedded HTTPS server.

The FTP method requires one or more FTP-servers installed. (See Appendix A for further

details). The XML below is a extract of a settings.xml, in which you have to replace

serverName, userName, userPassword with proper values. This must be set for all

applications.

<common>
 ...
 <remoteFile xsi:type="ftpremotefile">
 <!-- The class to use for RemoteFile objects. -->
 <class>dk.netarkivet.common.distribute.FTPRemoteFile</class>
 <!-- The default FTP-server used -->
 <serverName>hostname</serverName>
 <!-- The default FTP-server port used -->
 <serverPort>21</serverPort>
 <!-- The default FTP username -->
 <userName>exampleusername</userName>
 <!-- The default FTP password -->
 <userPassword>examplepassword</userPassword>
 <!-- The number of times FTPRemoteFile should try before giving up

 a copyTo operation. We augment FTP with checksum checks. -->
 <retries>3</retries>
 </remoteFile>

It is possible to use more than one FTP server, but each application can only use one. The

FTP server that is used for a particular transfer is determined by the application that is

sending a file. If you want to use more than one FTP-server, you must use different

settings-files, or define the serverName and possibly also the userName and userPassword

when starting the applications on the commandline with

 -Dsettings.commom.distribute.RemoteFile.serverName=FTP-server1
 -Dsettings.commom.distribute.RemoteFile.userName=ftpUser
 -Dsettings.commom.distribute.RemoteFile.userPassword=ftpPassword

Using HTTP as filetransfer method, you need to reserve a HTTP port on each machine per

application. You can set this port on an application level on the commandline:

-Dsettings.common.remoteFile.port=5442

The following XML shows the the corresponding syntax in the settings.xml file:

<common>
 <remoteFile xsi:type="httpremotefile">
 <!-- The class to use for RemoteFile objects. -->
 <class>dk.netarkivet.common.distribute.HTTPRemoteFile</class>
 <!-- Port for embedded HTTP server -->
 <port>5442</port>
 </remoteFile>

Using the HTTPS file transfer method, you first need to generate a certificate that is used

for communication. You can do this with the keytool application distributed with Java 5.

Run the following command:

keytool -alias NetarchiveSuite -keystore keystore -genkey

It should the respond with the following:

Enter keystore password:

Enter the password for the keystore.

The keytool will now prompt you for the following information

What is your first and last name?
 [Unknown]:
What is the name of your organizational unit?
 [Unknown]:
What is the name of your organization?
 [Unknown]:
What is the name of your City or Locality?
 [Unknown]:
What is the name of your State or Province?

 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]:
Is CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown correct?
 [no]:

answer all the questions, and end with "yes".

Finally you will bey asked for the certificate password.

Enter key password for <NetarchiveSuite>
 (RETURN if same as keystore password):

Answer with a password for the certificate.

You now how a file called keystore which contains a certificate. This keystore needs to

be available for all NetarchiveSuite applications, and referenced from settings as the

following example shows:

<common>
 ...
 <remoteFile xsi:type="httpsremotefile">
 <!-- The class to use for RemoteFile objects. -->
 <class>dk.netarkivet.common.distribute.HTTPSRemoteFile</class>
 <!-- The port for the remote file transfers -->
 <port>8300</port>
 <!-- The keystore -->
 <certificateKeyStore>path/to/keystore</certificateKeyStore>
 <!-- The keystore passwd -->

<certificateKeyStorePassword>testpass</certificateKeyStorePassword>
 <!-- The key password-->
 <certificatePassword>testpass2</certificatePassword>
 </remoteFile>
</common>

To keep your environment secure, you should make sure that the keystore and settings file

only are readable for the user running the application.

Configure job-generation

The scheduling takes place every one minute, unless the previous scheduling is not finished

yet. The scheduling interval cannot be changed. Scheduling amounts to searching for active

harvestdefinitions, that is ready to have jobs generated, and subsequently submitted for

harvesting. The job-generation procedure are governed by a set of settings prefixed by

settings.harvester.scheduler.. These settings rule how large your crawljobs are going to be,

and how long time they will take to complete. Note that harvestdefinitions consist of at least

one DomainConfiguration, (containing a Heritrix setup, and a seed-list), and that there are

two kinds: Snapshot Harvestdefinitions, and Selective Harvestdefinitions.

During scheduling, each harvest is split into a number of crawl jobs. This is done to keep

Heritrix from using too much memory and to avoid that particularly slow or large domains

cause harvests to take longer than necessary. In the job splitting part of the scheduling, the

scheduler partitions a large number of DomainConfigurations into several crawljobs. Each

crawljob can have only one Heritrix setup, so DomainConfigurations with different Heritrix

setups will be split into different crawljobs. Additionally, a number of parameters influence

what configurations are put into which jobs, attempting to create jobs that cover a

reasonable amount of domains of similar sizes.

If you don't want to have the harvests split into multiple jobs, you just need to set each of

jobs.maxRelativeSizeDifference, jobs.minAbsoluteSizeDifference,

jobs.maxTotalSize, and configChunkSize to a large number, such as

MAX_LONG. Initially, we suggest you don't change these parameters, as the way the

work together is subtle.

errorFactorPrevResult: Used when calculating expected size of a harvest of some domain

during the job-creation process for snapshot harvests. This defines the factor by which we

maximally expect domains that have previously been harvested to increase in size. The

default value is 10.

errorFactorBestGuess: Used when calculating expected size of a harvest of some domain

during job-creation process for a snapshot Harvests. This defines the factor by which we

maximally expect domains that have previously been incompletely harvested or not

harvested at all to increase in size. The default value is 20

expectedAverageBytesPerObject: How many bytes the average object is expected to be

on domains where we don't know any better. This number should grow over time, as of end

of 2005 empirical data shows 38000. Default is 38000.

maxDomainSize: Initial guess of #objects in an unknown domain. Default value is 5000

jobs.maxRelativeSizeDifference: The maximum allowed relative difference in expected

number of objects retrieved in a single job definition. Set to MAX_LONG for no splitting.

jobs.minAbsoluteSizeDifference: Size differences for jobs below this threshold are

ignored, regardless of the limits for the relative size difference. Set to MAX_LONG for no

splitting. Default value is 2000.

jobs.maxTotalSize: When this limit is exceeded no more configurations may be added to a

job. Set to MAX_LONG for no splitting. Default value is 2000000

configChunkSize: How many domain configurations we will process in one go before

making jobs out of them. This amount of domains will be stored in memory at the same

time. Set to MAX_LONG for no job splitting. The default value is 10000.

MAX_LONG refers to the number 2^63-1 or 9223372036854775807.

Configure Domain Granularity

The NetarchiveSuite software is bound to the concept of Domains, where a Domain is

defined as

"domainname"."tld"

This concept is useful for grouping harvests with regard to specific domains.

It can be configured what is considered a TLD by changing the settings files. The settings

file currently distributed with the NetarchiveSuite software will list all country-level

top-level-domains as "tld"s like ".dk", ".se" and ".no". However, as a proof of concept, for

".uk"-domains, there is listed the pseudo-top-level-domains ".co.uk", ".gov.uk", ".edu.uk"

and some more.

Currently, only grouping by domain suffix is supported. A feature request is open for

making the domain splitting pluggable. See https://gforge.statsbiblioteket.dk/tracker

/index.php?func=detail&aid=1072

Configure Heritrix process

Each harvester runs an instance of Heritrix for each harvest job being executed. It is

possible to get access to the Heritrix web user interface for purposes of pausing or stopping

a job, examining details of an ongoing harvest or even, if necessary, change an ongoing

harvest. Note that some changes to harvests, especially those that change the scope and

limits, may confuse the harvest definition system. We suggest using the Heritrix UI only for

examination and pausing/terminating jobs.

Each harvest application running requires two ports, one for the user interface and one for

JMX. The JMX port is set by the

settings.harvester.harvesting.heritrix.jmxPort setting, and does not

need to be open to other machines. The user interface port is set by the

settings.harvester.harvesting.heritrix.guiPort setting, and should be

open to the machines that the user interface should be accessible from. Make sure to have

different ports for each harvest application if you're running more than one on a machine.

Otherwise, your harvest jobs will fail when two harvest applications happen to try to run at

the same time -- an error that could go unnoticed for a while, but which is more likely to

happen exactly in critical situations where more harvesters are needed.

The Heritrix user interface is accessible through a browser using the port specified, e.g.

http://my.harvester.machine:8090, and entering the administrator name and password set in

the settings.harvester.harvesting.heritrix.adminName and

settings.harvester.harvesting.heritrix.adminPassword settings. It is

also possible to use JConsole to access the JMX interface of the Heritrix process, using one

of the passwords in the conf/jmxremote.password file.

The final setting for the Heritrix processes is the amount of heap space each process is

allowed to use. Since Heritrix uses a significant amount of heap space for seen URLs and

other stuff, it is advisable to keep the

settings.harvester.harvesting.heritrix.heapSize setting at at least its

default setting of 1.5G if there is enough memory in the machine for this (remember to

factor in the number of harvesters running on the machine -- swapping will slow the crawl

down significantly).

Configure web page look

The look of the web pages can be changed by changing files in the webpages directory.

Each of the five directories under webpages corresponds to one section of the web site, as

seen in the left-hand menu. The two PNG files transparent_log.png and

transparent_menu_logo.png are used on the front page and atop the left-hand menu,

respectively. They can be altered to suit your whim, but the width of

transparent_menu_logo.png should not be increased so much that the menu becomes overly

wide. The color scheme for each section is set in the netarkivet.css file for that section and

can be changed to suit your whim, though we recommend changing them all at the same

time to provide a uniform look.

The actual deployment of the NetarchiveSuite

edit

This section describes one possible way to distribute the NetarchiveSuite software to a

number of machines, but by no means the only one. In the examples below, we assume that

$NetarchiveSuiteDir is set to the directory in which the NetarchiveSuite code is to

be installed.

We assume that all machines in the chosen setup are unix servers. The procedure below

may not work on other platforms. After having created the new settings to be used in the

deployment of the software, zip together the NetarchiveSuite files including the new settings

and copy the modified NetarchiveSuite.zip to all machines taking part in the deployment:

export USER=test
export MACHINES="machine1.domain1, machine2.domain1, ..
machine1.domain2, machine2.domain2"
for MACHINE in $MACHINES; do
 scp NetarchiveSuite.zip $USER@$MACHINE:$NetarchiveSuiteDir
 ssh $USER@$MACHINE "cd $NetarchiveSuiteDir && unzip
NetarchiveSuite.zip"
done

Standard commandline settings

The CLASSPATH

The CLASSPATH needed to start and run the java applications in NetarchiveSuite consists

of 4 jarfiles, dk.netarkivet.harvester.jar, dk.netarkivet.archive.jar,

dk.netarkivet.viewerproxy.jar, and dk.netarkivet.monitor.jar. The dk.netarkivet.common.jar

and all our 3rd party dependencies need not be added explicitly to the CLASSPATH, as

they are referenced indirectly in the jar-files.

export NetarchiveSuiteDir=/path/to/netarchiveSuite
export CLASSPATH=$CLASSPATH:$NetarchiveSuiteDir/lib
/dk.netarkivet.harvester.jar
export CLASSPATH=$CLASSPATH:$NetarchiveSuiteDir/lib

/dk.netarkivet.archive.jar
export CLASSPATH=$CLASSPATH:$NetarchiveSuiteDir/lib
/dk.netarkivet.viewerproxy.jar
export CLASSPATH=$CLASSPATH:$NetarchiveSuiteDir/lib
/dk.netarkivet.monitor.jar

Logging

We use the apache.commons.logging.framework, so we need to point to the wanted

logger-class (org.apache.commons.logging.impl.Jdk14Logger) as well as to the logging

configuration file. You may want to use different logging properties for different

applications, especially when more that one application logs to the same logging directory.

E.g. you want the change line

java.util.logging.FileHandler.pattern=./log/APPID%u.log in the

conf/log.prop file to something different.

export
LOG_SETTINGS="-Dorg.apache.commons.logging.Log=org.apache.commons.logging.impl.Jdk14Logger
\
 -Djava.util.logging.config.file=$NetarchiveSuiteDir/conf/log.prop"

JMX settings

Each application has its own JMX- and RMI port. Here the JMX port is 8100 and the

associated RMI port 8100 + 100. The monitoring facility in the GUI assumes that every

RMI-port is JMXPort + 100. JMX also uses a password-file, which is the same throughout

the installation ($NetarchiveSuiteDir/conf/jmxremote.password)

export JMX_SETTINGS="-Dsettings.common.jmx.port=8100 \
 -Dsettings.common.jmx.rmiPort=8200"

Select the appropriate settings.file for the application

The conf/settings.xml (the new one configured to your environment) is probably OK for

most applications. But you may need to use special purpose settings-files for some

applications, e.g. BitarchiveApplications (since you can't allocate one than one fileDir on the

commandline). The settings file used in an application can be specified by:

export SETTING=-Ddk.netarkivet.settings.file=$NetarchiveSuiteDir/conf
/settings.xml

JVM options

We need to set the maximum Java heap size to 1.5 Gbytes. You may use this to change that

or add other JVM options.

export JAVA_OPTS=-Xmx1536m

Admin machine

On the admin machine, we have to start the following 4 applications:

1 HarvestdefinitionApplication (Starts the GUI and the scheduler).

2 instances of BitarchiveMonitorApplication (Controlling the access to a bitarchive at

a single location), one for each location (e.g. LocationA, and LocationB).

1 ARCRepositoryApplication (this application handles access to the bitarchives).

Starting the HarvestDefinitionApplication

If you are not using the Embedded Derby Database, you can skip the following. This

unzips the compressed fullhddb.jar located in

$NetarchiveSuiteDir/harvestdefinitionbasedir/:

cd $NetarchiveSuiteDir/harvestdefinitionbasedir
unzip fullhddb.jar

We also need to prepare the JSP-pages:

cd $NetarchiveSuiteDir/webpages
rm -rf BitPreservation
unzip -o BitPreservation.war -d BitPreservation
rm -rf HarvestDefinition
unzip -o HarvestDefinition.war -d HarvestDefinition
rm -rf History
unzip -o History.war -d History
rm -rf QA
unzip -o QA.war -d QA
rm -rf Status
unzip -o Status.war -d Status

Now we are ready to start the application:

cd $NetarchiveSuiteDir
export
APP=dk.netarkivet.harvester.webinterface.HarvestDefinitionApplication
java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP

Starting the BitarchiveMonitorApplication instances

In the general setup with a bitarchive distributed at two Locations, we have a

BitarchiveMonitorApplication associated with each Location. Here the locations are

"LocationA", and "LocationB". To distinguish the two instances from each other, we use

the settings.common.http.port setting, which is used as a identifier (here we use 8081,

8082) as the two identifiers. There is also a credentials code in plain text associated with the

bitarchive at each Location.

Start the monitor for bitarchive at 'LocationA' using "8081" as identifier thus:

cd $NetarchiveSuiteDir
export
APP_OPTIONS="-Dsettings.common.archive.bitarchive.thisLocation=LocationA
\
 -Dsettings.common.archive.bitarchive.thisCredentials=\
 SELECTED_CREDENTIALS_CODE_FOR_LOCATION_A \
 -Dsettings.common.http.port=8081"
export
APP=dk.netarkivet.archive.bitarchive.BitarchiveMonitorApplication
java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP_OPTIONS
$APP

Start the monitor for the bitarchive at 'LocationB' using "8082" as identifier thus:

cd $NetarchiveSuiteDir
export
APP_OPTIONS="-Dsettings.common.archive.bitarchive.thisLocation=LocationB
\
 -Dsettings.common.archive.bitarchive.thisCredentials=\
 SELECTED_CREDENTIALS_CODE_FOR_LOCATION_B \
 -Dsettings.common.http.port=8082"
export
APP=dk.netarkivet.archive.bitarchive.BitarchiveMonitorApplication
java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP_OPTIONS
$APP

one ARCRepository (this application handles all access to the bitarchives).

cd $NetarchiveSuiteDir
export
APP=dk.netarkivet.archive.arcrepository.ArcRepositoryApplication
java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP

Harvester machines

On each harvester machine, we have one or more HarvesterControllerApplications. Each

HarvesterControllerApplication have their own sidekick application that restarts the

HarvesterControllerApplication after each harvest. Settings related to the

HarvesterControllerApplication are

setting.common.http.port (to distinguish between HarvesterControllerApplications

running on same machine)

settings.harvester.harvesting.queuePriority (to select which of two queues to accept

jobs from: HIGHPRIORITY (jobs part of a selective harvest), or LOWPRIORITY

(jobs part of a snapshotharvest))

settings.harvester.harvesting.minSpaceLeft (how many bytes must be available in the

serverdir to accept crawljobs). The default is 400000000 (~400 Mbytes).

In the following, a low-priority HarvestControllerApplication is started with ID=8081

 cd $NetarchiveSuiteDir
 export
APP_OPTIONS="-Dsettings.harvester.harvesting.queuePriority=LOWPRIORITY

\
 -Dsettings.common.http.port=8081"
 export
APP=dk.netarkivet.harvester.harvesting.HarvestControllerApplication
 java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP_OPTIONS
$APP

Starting a SideKick application for the just started HarvestControllerApplication

 cd $NetarchiveSuiteDir
 export APP_OPTIONS=-Dsettings.common.http.port=8081
 export APP=dk.netarkivet.harvester.sidekick.SideKick
 export
APP_ARGS1=dk.netarkivet.harvester.sidekick.HarvestControllerServerMonitorHook
 export APP_ARGS2=full or relative path to a script that can start
the HarvesterControllerApplication again
 java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP_OPTIONS
$APP $APP_ARGS1 $APP_ARGS2

Bitarchive machines

For each Location, you can have BitarchiveServer's installed on one or more machines. We

suggest using just one BitarchiveServer for each machine, though it is possible to use more

than one. Each BitarchiveServer can have storage on several filesystems, so if archive-

storage is spread over more than one filesystem, you need to modify the settings file like

this

<fileDir>/home/bitarchiveOne/</fileDir>
<fileDir>/home/bitarchiveTwo/</fileDir>

Starting a BitarchiveServer requires knowing what Location it resides on, and the

credentials required for correcting the data stored in the bitarchive:

 cd $NetarchiveSuiteDir
 export
APP_OPTIONS="-Dsettings.archive.bitarchive.thisLocation=ThisLocation \

-Dsettings.archive.bitarchive.thisCredentials=CREDENTIALS"
 export APP=dk.netarkivet.archive.bitarchive.BitarchiveApplication
 java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP_OPTIONS
$APP

Access servers

There are normally access-servers at both Locations. On the access-servers, we deploy any

number of ViewerProxyApplication instances, and maybe one IndexServerApplication

(only one in all) used to generate indices needed by the harvesters and the

ViewerProxyApplication instances.

 cd $NetarchiveSuiteDir
 export APP=dk.netarkivet.archive.indexserver.IndexServerApplication
java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP

Each ViewerproxyApplication instance uses a dedicated HTTP port

(settings.common.http.port), and its own distinct base directory

(settings.viewerproxy.baseDir). They also belong to a Location

(settings.archive.bitarchive.thisLocation). In the start sample below, the instance uses HTTP

port 8081 and 'viewerproxy_8081' as base directory, and belongs to locationA:

 cd $NetarchiveSuiteDir
 export APP_OPTIONS="-Dsettings.common.http.port=8081 \
 -Dsettings.viewerproxy.baseDir=viewerproxy_8081 \
 -Dsettings.archive.bitarchive.thisLocation=locationA"
 export APP=dk.netarkivet.viewerproxy.ViewerProxyApplication
 java $JAVA_OPTS $SETTING $LOG_SETTINGS $JMX_SETTINGS $APP_OPTIONS
$APP

Starting and stopping the NetarchiveSuite

edit

You need to start and stop the NetarchiveSuite applications in the correct order. The most

critical part is that the BitarchiveMonitor must not start before the BitarchiveServers, as it

might then try to perform batch jobs without all BitarchiveServers recieving the message.

The following is a suggested order of startup:

NetarchiveSuite application startup order

1. The BitarchiveApplication on all bitarchive servers is started:

 dk.netarkivet.archive.bitarchive.BitarchiveApplication

2. The applications on the admin-machine are started:

 - dk.netarkivet.harvester.webinterface.HarvestDefinitionApplication
 - dk.netarkivet.archive.arcrepository.ArcRepositoryApplication
 - dk.netarkivet.archive.bitarchive.BitarchiveMonitorApplication for
Location A
 - dk.netarkivet.archive.bitarchive.BitarchiveMonitorApplication for
Location B

3. The applications on the harvester machines are started: For each

HarvesterControllerApplication deployed on this machine, the SideKick application is

started, which in turn starts a HarvesterControllerApplication

4. The applications on the access-servers are started by first starting the IndexServer and

then one or more ViewerproxyApplication instances.

NetarchiveSuite application stopping order

After locating the process-id of any given process, the actually killing of the process is done

on unix-machines with the command: kill $PID

The killing itself is done in the following order:

1. The applications on the admin-machine are killed:

 - dk.netarkivet.harvester.webinterface.HarvestDefinitionApplication
 - dk.netarkivet.archive.arcrepository.ArcRepositoryApplication
 - dk.netarkivet.archive.bitarchive.BitarchiveMonitorApplication

2. The BitarchiveApplication on all bitarchive servers are shut down:

 dk.netarkivet.archive.bitarchive.BitarchiveApplication

3. The applications on the harvester machines are shut down in this order: For each

HarvesterControllerApplication deployed on this machine, the SideKick application is shut

down first, and then the HarvesterControllerApplication. This prevents the SideKick

application from starting a new HarvestControllerApplication.

4. The applications on the access-servers are shutdown by first killing the IndexServer and

then the ViewerproxyApplication instances.

Remember to empty the JMS queues after shutting down the NetarchiveSuite if you are

upgrading the system. If any outstanding JMS messages are around next time the

NetarchiveSuite is started, they may cause deserialization errors if the message definitions

have changed. To do this, you must recall what JMS environmentName your

NetarchiveSuite instance have been using. The details of this are explained in Appendix A

below.

In the Danish installation, we empty the queues each time the system is restarted, so the

effect of leaving messages in the queues over a restart even when not upgrading has not

been tested in practice.

Monitoring an running instance of NetarchiveSuite

edit

The Status component of the NetarchiveSuite GUI implemented using JMX enables easy

monitoring of all running applications. This also detects non-responding machines and

applications. All important log messages (Log level INFO and above) can be studied in the

GUI. However, only the last 100 messages from each application are available. This

number can be increased or decreased using the setting

settings.monitor.logging.historySize.

If you want to get more information about the current status of a particular application, you

can use the program jconsole. You need to know on which machine the the application is

running (HOSTNAME), the JMX port (JMX_PORT) and RMI port (RMI_PORT)

assigned to the application, and password for the monitorRole. Then you just write

jconsole, and click on the 'advanced' tab, enter the URL

service:jmx:rmi://HOSTNAME:RMI_PORT/jndi/rmi://HOSTNAME:JMX_PORT
/jmxrmi

When asked for username, enter monitorRole and the password set for the application. Log

machines can now examined for the given application by seleting MBeans, and unfolding

"dk.netarkivet.common.logging".

Appendices

edit

Appendix A : Installing external software

Installing and configuring a JMS broker

The software have been tested with the free JMS broker from Sun "Open Message Queue

4.1", and the commercial JMSBroker "Sun MQ 3.6 Enterprise Edition".

Obtaining JMS

Sun's Open Message Queue can be obtained from the following site:

https://mq.dev.java.net/downloads.html Go to the section named "Open Message Queue

Binaries", and click on the Linux link in the subsection "Latest Open MQ 4.1 Binary

Downloads". This will give you a jar-file named "mq4_1-binary-Linux_X86-

XXXXXXXX.jar".

Note: We only support installation on the Linux platform here. However, you may want to

install your JMS broker on a different platform. Binary versions are available at the site for:

Solaris Sparc, Solaris x86, Linux (x86), Windows (x86). If you want to build a binary for

another platform, the source can be downloaded from the download-page.

Installing the JMS broker

Select Linux server where you want to install JMS broker, and select an installation

directory. Then log on the linux server as root, and do the following:

 export INSTALLATION_DIR=/path/to/installationdir
 cd $INSTALLATION_DIR
 unzip mq4_1-binary-Linux_X86-XXXXXXXX.jar
 chmod +x ./mq/bin/imqbrokerd
 ./mq/bin/imqbrokerd -reset store -tty (tests that the broker can
start - CTLR-C to stop)

Check that it starts, and that the last message is
 "Broker <localhost>:7676 ready" We

are now ready to configure the JMS broker.

Configuring the JMS broker

Edit the file $INSTALLATION_DIR/mq/etc/imqenv.conf to set

IMQ_DEFAULT_JAVAHOME to a JDK1.5.0.

Changing the number of the listening port number 7676 is done by editing the line

 imq.portmapper.port=7676 in the file

$INSTALLATION_DIR/mq/lib/props/broker/default.properties

Set max listeners any given queue to 20. You need to make sure, that the following

line imq.autocreate.queue.maxNumActiveConsumers=20 is present

and not commented out in the file $INSTALLATION_DIR/mq
/var/instances/imqbroker/props/config.properties

Starting and stopping JMS

The broker is started directly in this way:

 $INSTALLATION_DIR/mq/bin/imqbrokerd -reset store -tty &

The sysadmin would maybe like to start the broker on machine startup by inserting the

statement above into the /etc/rc.d/rc.local

The broker is stopped in this way:

logon on machine as root
find processid for the broker (ps auxw | grep imqbrokerd)
kill -9 $IMQ_PROCESSID

Alternatively press Crtl-c, if the terminal where the broker was started, is still available

You can test that JMS broker is alive by telnetting to its port, where it will give some

technical information in reply:

[svc@udvikling kb-dev-adm-001.kb.dk]$ telnet localhost 7676
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
101 imqbroker 4.1
portmapper tcp PORTMAPPER 7676 [sessionid=1729683678303517696]
cluster_discovery tcp CLUSTER_DISCOVERY 46760
jmxrmi rmi JMX 0 [url=service:jmx:rmi://udvikling.kb.dk
/stub/rO0...Hg=]
admin tcp ADMIN 46763
jms tcp NORMAL 46762
cluster tcp CLUSTER 46764
.
Connection closed by foreign host.

To run JMS client applications, include the following jar files in

the classpath :

$INSTALLATION_DIR/mq/lib/jms.jar $INSTALLATION_DIR/mq

/lib/imq.jar

Create a passfile named '.imq_passfile' (used when emptying JMS queues):

imq.imqcmd.password=REPLACE_WITH_PASSWORD

How to empty queues

log on as root to the server, where the JMS broker is installed. The following assumes that

the JMS environmentName is PROD, and that JMS password file resides in

~root/.imq_passfile:

export JMS_ENV=PROD
export MQ_HOME=/usr/local
imqcmd using -u admin -passfile ~/.imq_passfile
$MQ_HOME/bin/imqcmd list dst -t q -u admin -passfile ~/.imq_passfile
| grep ^${JMS_ENV}_ | cut -f1 -d\ |xargs -r -n 1 $MQ_HOME/bin/imqcmd
destroy dst -t q -u admin -passfile ~/.imq_passfile -f -n
$MQ_HOME/bin/imqcmd list dst -t t -u admin -passfile ~/.imq_passfile
| grep ^${JMS_ENV}_ | cut -f1 -d\ |xargs -r -n 1 $MQ_HOME/bin/imqcmd
destroy dst -t t -u admin -passfile
~/.imq_passfile -f -n"

Installing and configuring FTP

If you decide to use FTPRemote for file transfer in the NetarchiveSuite, you need to install

and start one or more FTP servers, before you begin the installation of the NetarchiveSuite.

Any brand of FTP-servers will probably, but we have good experience with Proftpd.

You can download Proftpd from http://www.proftpd.org/. We are using version 1.2.10,

but any recent non-beta version will probably do.

The text below the proftpd.conf needed by NetarchiveSuite:

Port 21 is the standard FTP port.
Port 21

Umask 022 is a good standard umask to prevent new dirs and files
from being group and world writable.
Umask 022

To prevent DoS attacks, set the maximum number of child processes
to 30. If you need to allow more than 30 concurrent connections
at once, simply increase this value. Note that this ONLY works
in standalone mode, in inetd mode you should use an inetd server
that allows you to limit maximum number of processes per service
(such as xinetd).
MaxInstances 30

Set the user and group under which the server will run.
User nobody
#Group nogroup
Group nobody

To cause every FTP user to be "jailed" (chrooted) into their home
directory, uncomment this line.
#DefaultRoot ~

Normally, we want files to be overwriteable.
This is necessary to allow the append operation
AllowOverwrite on

AllowStoreRestart on

Bar use of SITE CHMOD by default
<Limit SITE_CHMOD>
 DenyAll
</Limit>

This enables or disables the PAM authentication module.
The default is 'on'.
#AuthPAM off

Starting and stopping a Proftpd server

Log as root on to the server, where Proftpd is installed, and the following command will

start the FTP-server

/usr/local/sbin/proftpd

The following will kill the FTP-server.

killall -9 proftpd

Appendix B : Configurable settings in the

NetarchiveSuite

The NetarchiveSuite uses a XML file to define settings for its applications. The XML file

must conform to the XML schema lib/data-definitions/settings.xsd. The XML file has a

specific element for each of the dk.netarkivet.* packages: common, harvester, archive,

viewerproxy, and monitor, and then deploy, which also belongs to the monitor packages

In the common part of the settings.xml, we have general purpose settings

(settings.common.tmpDir, settings.common.http.port), and settings, that allow us select

plugins and their associated arguments(settings.common.RemoteFile.class,

settings.common.jms.broker, settings.common.arcrepositoryClient, and

settings.common.indexClient.class).

In the harvester part of the settings.xml, we have settings configuring the harvesting

process: scheduling, job splitting Most of these settings are used by the

HarvestDefinitionApplication

In the archive part of the settings file, we have settings related to archive-access (e.g. certain

timeouts, locations and their credentials is defined here). Also behaviour of the

BitarchiveApplications is set here.

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://www.netarkivet.dk/schemas/settings"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <common>
 <!-- Common temporary directory for all applications. -->
 <tempDir>./tests/commontempdir</tempDir>
 <!-- FTP connection data-->
 <remoteFile xsi:type="ftpremotefile">
 <!-- The class to use for RemoteFile objects. -->

<class>dk.netarkivet.common.distribute.FTPRemoteFile</class>
 <!-- The default FTP-server used -->
 <serverName>localhost</serverName>
 <!-- The default FTP-server port used -->
 <serverPort>21</serverPort>
 <!-- The default FTP username -->
 <userName>exampleusername</userName>
 <!-- The default FTP password -->
 <userPassword>examplepassword</userPassword>
 <!-- The number of times FTPRemoteFile should try before
giving up
 a copyTo operation. We augment FTP with checksum
checks. -->
 <retries>3</retries>
 </remoteFile>
 <!-- Connection data for JMS-->
 <jms>
 <!-- Selects the broker class to be used. Must be a
subclass of
 dk.netarkivet.common.distribute.JMSConnection. -->

<class>dk.netarkivet.common.distribute.JMSConnectionSunMQ</class>
 <!-- The JMS broker host contacted by the JMS connection
-->
 <broker>localhost</broker>
 <!-- The port the JMS connection should use -->
 <port>7676</port>
 <!-- The name of the environment in which this code is
running, e.g.
 PROD, RELEASETEST, NHC,... Common prefix to all JMS
channels
 -->
 <environmentName>DEV</environmentName>
 </jms>
 <http>
 <!-- The *unique* (per host) port number that may or may
not be
 used to serve http, but is frequently used to
identify
 the process.-->
 <port>8076</port>
 </http>
 <arcrepositoryClient xsi:type="jmsarcrepositoryclient">
 <!-- The class that implements the ArcRepositoryClient.
This class
 will be instantiated by the
ArcRepositoryClientFactory -->

<class>dk.netarkivet.archive.arcrepository.distribute.JMSArcRepositoryClient</class>
 <!-- How many milliseconds we will wait before giving up
on a
 lookup request to the Arcrepository. Set to 1 minute

to
 make it possible to retrieve large records using FTP
-->
 <getTimeout>60000</getTimeout>
 <!-- Number of times to try sending a store message
before failing,
 including the first attempt -->
 <storeRetries>3</storeRetries>
 <!-- Timeout in milliseconds before retrying when calling
 ArcRepositoryClient.store() -->
 <storeTimeout>3600000</storeTimeout>
 </arcrepositoryClient>
 <indexClient xsi:type="indexrequestclient">
 <!-- The class instantiated to give access to indices.
Will be
 created by IndexClientFactory -->

<class>dk.netarkivet.archive.indexserver.distribute.IndexRequestClient</class>
 <!-- The amount of time, in milliseconds, we should wait
for replies
 when issuing a call to generate an index over som
jobs.
 -->
 <indexRequestTimeout>43200000</indexRequestTimeout>
 </indexClient>
 <!-- The name of the directory where cache data global to the
entire
 machine can be stored. Various kinds of caches should
be stored in
 subdirectories of this -->
 <cacheDir>cache</cacheDir>
 <!--The number of milliseconds we wait for processes to react
 to shutdown requests.-->
 <processTimeout>5000</processTimeout>
 <!-- Error notification settings -->
 <notifications>
 <!-- Which class to instantiate to handle error
notifications -->

<class>dk.netarkivet.common.utils.EMailNotifications</class>
 <!-- The receiver of emails -->
 <receiver>example@netarkivet.dk</receiver>
 <!-- The stated sender of emails (and receiver of
bounces)-->
 <sender>example@netarkivet.dk</sender>
 </notifications>
 <!-- Settings for sending email. Currently mail is only used
for email
 notifications. -->
 <mail>
 <!-- The email server to use -->
 <server>examplesmtpserver.netarkivet.dk</server>
 </mail>
 <!-- JMX logging settings -->
 <jmx>
 <!-- The port to connect to using JMX -->
 <port>8100</port>
 <!-- The RMI port used for communicating with beans -->
 <rmiPort>8200</rmiPort>
 <!-- The password file, containing information about who
may
 connect -->

 <passwordFile>conf/jmxremote.password</passwordFile>
 </jmx>
 <!-- Settings for the web GUI -->
 <webinterface>
 <!-- Language settings -->
 <language>
 <!-- A locale the GUI is available as -->
 <locale>da</locale>
 <!-- Native name of the language for this locale -->
 <name>Dansk</name>
 </language>
 <!-- Language settings -->
 <language>
 <!-- A locale the GUI is available as -->
 <locale>en</locale>
 <!-- Native name of the language for this locale -->
 <name>English</name>
 </language>
 <siteSection>
 <!-- A subclass of SiteSection that defines this part
of the
 web interface. -->

<class>dk.netarkivet.harvester.webinterface.DefinitionsSiteSection</class>
 <!-- The directory or war-file containing the web
application
 for this site section.-->

<webapplication>webpages/HarvestDefinition</webapplication>
 <!-- The URL path for this section of the web
interface. -->
 <deployPath>/HarvestDefinition</deployPath>
 </siteSection>
 <siteSection>
 <!-- A subclass of SiteSection that defines this part
of the
 web interface. -->

<class>dk.netarkivet.harvester.webinterface.HistorySiteSection</class>
 <!-- The directory or war-file containing the web
application
 for this site section.-->
 <webapplication>webpages/History</webapplication>
 <!-- The URL path for this section of the web
interface. -->
 <deployPath>/History</deployPath>
 </siteSection>
 <siteSection>
 <!-- A subclass of SiteSection that defines this part
of the
 web interface. -->

<class>dk.netarkivet.archive.webinterface.BitPreservationSiteSection</class>
 <!-- The directory or war-file containing the web
application
 for this site section.-->

<webapplication>webpages/BitPreservation</webapplication>
 <!-- The URL path for this section of the web
interface. -->
 <deployPath>/BitPreservation</deployPath>
 </siteSection>

 <siteSection>
 <!-- A subclass of SiteSection that defines this part
of the
 web interface. -->

<class>dk.netarkivet.viewerproxy.webinterface.QASiteSection</class>
 <!-- The directory or war-file containing the web
application
 for this site section.-->
 <webapplication>webpages/QA</webapplication>
 <!-- The URL path for this section of the web
interface. -->
 <deployPath>/QA</deployPath>
 </siteSection>
 <siteSection>
 <!-- A subclass of SiteSection that defines this part
of the
 web interface. -->

<class>dk.netarkivet.monitor.webinterface.StatusSiteSection</class>
 <!-- The directory or war-file containing the web
application
 for this site section.-->
 <webapplication>webpages/Status</webapplication>
 <!-- The URL path for this section of the web
interface. -->
 <deployPath>/Status</deployPath>
 </siteSection>
 </webinterface>
 </common>
 <harvester>
 <datamodel>
 <domain>
 <!-- Default seed list to use when new domains are
created -->
 <defaultSeedlist>defaultseeds</defaultSeedlist>
 <!-- The name of a configuration that is created by
default and
 which is initially used for snapshot harvests-->
 <defaultConfig>defaultconfig</defaultConfig>
 <!-- Name of order xml template used for domains if
nothing
 else is specified (e.g. newly created configrations
use this) -->
 <defaultOrderxml>default_orderxml</defaultOrderxml>
 <!-- Default download rate for domain configuration.
 Not currently enforced. -->
 <defaultMaxrate>100</defaultMaxrate>
 <!-- This setting describes valid TLDs to define
domains. -->
 <tld>ac</tld>
 <tld>ad</tld>
 <tld>ae</tld>
 <tld>aero</tld>
 <tld>af</tld>
 <tld>ag</tld>
 <tld>ai</tld>
 <tld>al</tld>
 <tld>am</tld>
 <tld>an</tld>
 <tld>ao</tld>
 <tld>aq</tld>

 <tld>ar</tld>
 <tld>arpa</tld>
 <tld>as</tld>
 <tld>at</tld>
 <tld>au</tld>
 <tld>aw</tld>
 <tld>ax</tld>
 <tld>az</tld>
 <tld>ba</tld>
 <tld>bb</tld>
 <tld>bd</tld>
 <tld>be</tld>
 <tld>bf</tld>
 <tld>bg</tld>
 <tld>bh</tld>
 <tld>bi</tld>
 <tld>biz</tld>
 <tld>bj</tld>
 <tld>bm</tld>
 <tld>bn</tld>
 <tld>bo</tld>
 <tld>br</tld>
 <tld>bs</tld>
 <tld>bt</tld>
 <tld>bv</tld>
 <tld>bw</tld>
 <tld>by</tld>
 <tld>bz</tld>
 <tld>ca</tld>
 <tld>cat</tld>
 <tld>cc</tld>
 <tld>cd</tld>
 <tld>cf</tld>
 <tld>cg</tld>
 <tld>ch</tld>
 <tld>ci</tld>
 <tld>ck</tld>
 <tld>cl</tld>
 <tld>cm</tld>
 <tld>cn</tld>
 <tld>co</tld>
 <tld>com</tld>
 <tld>coop</tld>
 <tld>cr</tld>
 <tld>cs</tld>
 <tld>cu</tld>
 <tld>cv</tld>
 <tld>cx</tld>
 <tld>cy</tld>
 <tld>cz</tld>
 <tld>de</tld>
 <tld>dj</tld>
 <tld>dk</tld>
 <tld>dm</tld>
 <tld>do</tld>
 <tld>dz</tld>
 <tld>ec</tld>
 <tld>edu</tld>
 <tld>ee</tld>
 <tld>eg</tld>
 <tld>eh</tld>
 <tld>er</tld>

 <tld>es</tld>
 <tld>et</tld>
 <tld>eu</tld>
 <tld>fi</tld>
 <tld>fj</tld>
 <tld>fk</tld>
 <tld>fm</tld>
 <tld>fo</tld>
 <tld>fr</tld>
 <tld>ga</tld>
 <tld>gb</tld>
 <tld>gd</tld>
 <tld>ge</tld>
 <tld>gf</tld>
 <tld>gg</tld>
 <tld>gh</tld>
 <tld>gi</tld>
 <tld>gl</tld>
 <tld>gm</tld>
 <tld>gn</tld>
 <tld>gov</tld>
 <tld>gp</tld>
 <tld>gq</tld>
 <tld>gr</tld>
 <tld>gs</tld>
 <tld>gt</tld>
 <tld>gu</tld>
 <tld>gw</tld>
 <tld>gy</tld>
 <tld>hk</tld>
 <tld>hm</tld>
 <tld>hn</tld>
 <tld>hr</tld>
 <tld>ht</tld>
 <tld>hu</tld>
 <tld>id</tld>
 <tld>ie</tld>
 <tld>il</tld>
 <tld>im</tld>
 <tld>in</tld>
 <tld>info</tld>
 <tld>int</tld>
 <tld>io</tld>
 <tld>iq</tld>
 <tld>ir</tld>
 <tld>is</tld>
 <tld>it</tld>
 <tld>je</tld>
 <tld>jm</tld>
 <tld>jo</tld>
 <tld>jobs</tld>
 <tld>jp</tld>
 <tld>ke</tld>
 <tld>kg</tld>
 <tld>kh</tld>
 <tld>ki</tld>
 <tld>km</tld>
 <tld>kn</tld>
 <tld>kp</tld>
 <tld>kr</tld>
 <tld>kw</tld>
 <tld>ky</tld>

 <tld>kz</tld>
 <tld>la</tld>
 <tld>lb</tld>
 <tld>lc</tld>
 <tld>li</tld>
 <tld>lk</tld>
 <tld>lr</tld>
 <tld>ls</tld>
 <tld>lt</tld>
 <tld>lu</tld>
 <tld>lv</tld>
 <tld>ly</tld>
 <tld>ma</tld>
 <tld>mc</tld>
 <tld>md</tld>
 <tld>mg</tld>
 <tld>mh</tld>
 <tld>mil</tld>
 <tld>mk</tld>
 <tld>ml</tld>
 <tld>mm</tld>
 <tld>mn</tld>
 <tld>mo</tld>
 <tld>mobi</tld>
 <tld>mp</tld>
 <tld>mq</tld>
 <tld>mr</tld>
 <tld>ms</tld>
 <tld>mt</tld>
 <tld>mu</tld>
 <tld>museum</tld>
 <tld>mv</tld>
 <tld>mw</tld>
 <tld>mx</tld>
 <tld>my</tld>
 <tld>mz</tld>
 <tld>na</tld>
 <tld>name</tld>
 <tld>nc</tld>
 <tld>ne</tld>
 <tld>net</tld>
 <tld>nf</tld>
 <tld>ng</tld>
 <tld>ni</tld>
 <tld>nl</tld>
 <tld>no</tld>
 <tld>np</tld>
 <tld>nr</tld>
 <tld>nt</tld>
 <tld>nu</tld>
 <tld>nz</tld>
 <tld>om</tld>
 <tld>org</tld>
 <tld>pa</tld>
 <tld>pe</tld>
 <tld>pf</tld>
 <tld>pg</tld>
 <tld>ph</tld>
 <tld>pk</tld>
 <tld>pl</tld>
 <tld>pm</tld>
 <tld>pn</tld>

 <tld>pr</tld>
 <tld>pro</tld>
 <tld>ps</tld>
 <tld>pt</tld>
 <tld>pw</tld>
 <tld>py</tld>
 <tld>qa</tld>
 <tld>re</tld>
 <tld>ro</tld>
 <tld>ru</tld>
 <tld>rw</tld>
 <tld>sa</tld>
 <tld>sb</tld>
 <tld>sc</tld>
 <tld>sd</tld>
 <tld>se</tld>
 <tld>sg</tld>
 <tld>sh</tld>
 <tld>si</tld>
 <tld>sj</tld>
 <tld>sk</tld>
 <tld>sl</tld>
 <tld>sm</tld>
 <tld>sn</tld>
 <tld>so</tld>
 <tld>sr</tld>
 <tld>st</tld>
 <tld>su</tld>
 <tld>sv</tld>
 <tld>sy</tld>
 <tld>sz</tld>
 <tld>tc</tld>
 <tld>td</tld>
 <tld>tf</tld>
 <tld>tg</tld>
 <tld>th</tld>
 <tld>tj</tld>
 <tld>tk</tld>
 <tld>tl</tld>
 <tld>tm</tld>
 <tld>tn</tld>
 <tld>to</tld>
 <tld>tp</tld>
 <tld>tr</tld>
 <tld>travel</tld>
 <tld>tt</tld>
 <tld>tv</tld>
 <tld>tw</tld>
 <tld>tz</tld>
 <tld>ua</tld>
 <tld>ug</tld>
 <tld>ac.uk</tld>
 <tld>co.uk</tld>
 <tld>gov.uk</tld>
 <tld>ltd.uk</tld>
 <tld>me.uk</tld>
 <tld>mod.uk</tld>
 <tld>net.uk</tld>
 <tld>nic.uk</tld>
 <tld>nhs.uk</tld>
 <tld>org.uk</tld>
 <tld>plc.uk</tld>

 <tld>police.uk</tld>
 <tld>sch.uk</tld>
 <tld>govt.uk</tld>
 <tld>orgn.uk</tld>
 <tld>lea.uk</tld>
 <tld>mil.uk</tld>
 <tld>nel.uk</tld>
 <tld>uk</tld>
 <tld>us</tld>
 <tld>uy</tld>
 <tld>uz</tld>
 <tld>va</tld>
 <tld>vc</tld>
 <tld>ve</tld>
 <tld>vg</tld>
 <tld>vi</tld>
 <tld>vn</tld>
 <tld>vu</tld>
 <tld>wf</tld>
 <tld>ws</tld>
 <tld>ye</tld>
 <tld>yt</tld>
 <tld>yu</tld>
 <tld>za</tld>
 <tld>zm</tld>
 <tld>zw</tld>
 </domain>
 <database xsi:type="derbydatabase">
 <!-- The full URL for connecting to the database.
 If present and not empty, this URL must match
the settings
 baseDir and class.-->

<url>jdbc:derby:harvestdefinitionbasedir/fullhddb</url>
 <!-- The class that handles DB-specific methods -->

<specificsclass>dk.netarkivet.harvester.datamodel.DerbyEmbeddedSpecifics</specificsclass>
 <!-- The earliest time of day backup will be
initiated, 0..24
 hours. At a time shortly after this, a
consistent backup
 copy of the database will be created -->
 <backupInitHour>3</backupInitHour>
 </database>
 </datamodel>
 <scheduler>
 <!-- Used when calculating expected size of a harvest of
some
 configuration during job-creation process. This
defines how
 great a possible factor we will permit a harvest to
be larger
 then the expectation, when basing the expectation on
a previous
 completed job. -->
 <errorFactorPrevResult>10</errorFactorPrevResult>
 <!-- Used when calculating expected size of a harvest of
some
 configuration during job-creation process. This
defines how
 great a possible factor we will permit a harvest to
be larger

 then the expectation, when basing the expectation on
previous
 uncompleted harvests or no harvest data at all. -->
 <errorFactorBestGuess>20</errorFactorBestGuess>
 <!-- How many bytes the average object is expected to be
on domains
 where we don't know any better. This number should
grow over
 time, as of end of 2005 empirical data shows 38000
-->

<expectedAverageBytesPerObject>38000</expectedAverageBytesPerObject>
 <!-- Initial guess of #objects in an unknown domain -->
 <maxDomainSize>5000</maxDomainSize>
 <jobs><!-- One Job corresponds to a Heritrix run -->
 <!-- The maximum allowed relative difference in
expected number
 of objects retrieved in a single job
definition. Set to
 MAX_LONG for no splitting -->

<maxRelativeSizeDifference>100</maxRelativeSizeDifference>
 <!-- Size differences for jobs below this threshold
are ignored,
 regardless of the limits for the relative size
difference.
 Set to MAX_LONG for no splitting. -->

<minAbsoluteSizeDifference>2000</minAbsoluteSizeDifference>
 <!-- When this limit is exceeded no more
configurations may be
 added to a job. Set to MAX_LONG for no
splitting. -->
 <maxTotalSize>2000000</maxTotalSize>
 </jobs>
 <!-- How many domain configurations we will process in
one go before
 making jobs out of them. This amount of domains
will be stored
 in memory at the same time. Set to MAX_LONG for no
job
 splitting. -->
 <configChunkSize>10000</configChunkSize>
 </scheduler>
 <harvesting>
 <!-- Each job gets a subdir of this dir. Job data is
written and
 Heritrix writes to that subdir-->
 <serverDir>server</serverDir>
 <!-- The minimum amount of free bytes in the serverDir
 required before accepting any harvest-jobs. Default
is
 400000000 bytes (~400 Mbytes).
 -->
 <minSpaceLeft>400000000</minSpaceLeft>
 <!-- The directory in which data from old jobs is kept
after
 uploading. Each directory from serverDir will be
moved to
 here if any data remains, either due to failed
uploads or
 because it wasn't attempted uploaded. -->

 <oldjobsDir>oldjobs</oldjobsDir>
 <!-- Pool to take jobs from -->
 <queuePriority>HIGHPRIORITY</queuePriority>
 <!-- When to stop Heritrix, timeouts in ms. -->
 <heritrix>
 <!-- The timeout setting for aborting a crawl based on
 crawler-inactivity. If the crawler is inactive
for this
 amount of seconds the crawl will be aborted.
 The inactivity is measured on the
 crawlController.activeToeCount(). -->
 <inactivityTimeout>100</inactivityTimeout>
 <!-- The timeout value (in seconds) used in
HeritrixLauncher
 for aborting crawl when no bytes are being
received from
 web servers. -->
 <noresponseTimeout>100</noresponseTimeout>
 <!-- Name for accessing the Heritrix GUI -->
 <adminName>admin</adminName>
 <!-- Password for accesing the Heritrix GUI -->
 <adminPassword>adminPassword</adminPassword>
 <!-- Port used to access the Heritrix web user
interface.
 This port must not be used by anything else on
the machine.
 -->
 <guiPort>8090</guiPort>
 <!-- Port used to access the Heritrix JMX interface.
 This port must not be used by anything else on
the machine,
 but does not need to be accessible from other
machines
 unless you want to be able to use jconsole to
access
 Heritrix directly
 -->
 <jmxPort>8091</jmxPort>
 <!-- The heap size to use for the Heritrix
sub-process. This
 should probably be fairly large. It can be
specified in
 the same way as for the -Xmx argument to Java,
e.g.
 512M, 2G etc.-->
 <heapSize>1598M</heapSize>
 </heritrix>
 <!-- The file used to signal that the harvest controller
is running.
 Sidekick starts HarvestController if this file is
not present
 -->
 <isrunningFile>./hcsRunning.tmp</isrunningFile>
 </harvesting>
 </harvester>
 <archive>
 <arcrepository>
 <!-- Absolute/relative path to where the "central list of
files and
 checksums" (admin.data) is written. Used by
ArcRepository and
 BitPreservation. -->

 <baseDir>.</baseDir>
 <!-- The names of all bit archive locations in the
 environment, e.g., "KB" and "SB". -->
 <location>
 <name>SB</name>
 </location>
 <location>
 <name>KB</name>
 </location>
 <!-- Default bit archive to use for batch jobs (if none
is specified) -->
 <batchLocation>KB</batchLocation>
 </arcrepository>
 <bitarchive>
 <!-- The minimum amount of bytes left *in any dir* that
we will
 allow a bitarchive machine to accept uploads with.
When no
 dir has more space than this, the bitarchive machine
stops
 listening for uploads. This values should at the
very least
 be greater than the largest ARC file you expect to
receive.
 -->
 <minSpaceLeft>200000000</minSpaceLeft>
 <!-- These are the directories where ARC files are stored
 (in a subdir). If more than one is given, they are
used from
 one end. -->
 <fileDir>m:\bitarchive</fileDir>
 <fileDir>n:\bitarchive</fileDir>
 <fileDir>o:\bitarchive</fileDir>
 <fileDir>p:\bitarchive</fileDir>
 <!-- The frequency in milliseconds of heartbeats that are
sent by
 each BitarchiveServer to the BitarchiveMonitor. -->
 <heartbeatFrequency>1000</heartbeatFrequency>
 <!-- If we haven't heard from a bit archive within this
many
 milliseconds, we don't excpect it to be online and
won't wait
 for them to reply on a batch job. This number
should be
 significantly greater than heartbeatFrequency to
account for
 temporary network congestion. -->
 <acceptableHeartbeatDelay>60000</acceptableHeartbeatDelay>
 <!-- The BitarchiveMonitorServer will listen for
BatchEndedMessages
 for this many milliseconds before it decides that a
batch job
 is taking too long and returns just the replies it
has
 received at that point. -->
 <batchMessageTimeout>1209600000</batchMessageTimeout>
 <!-- For archiving applications, which bit archive are
you part of?-->
 <thisLocation>SB</thisLocation>
 <!-- Credentials to enter in the GUI for "deleting" ARC
files in
 this bit archive -->

 <thisCredentials>examplecredentials</thisCredentials>
 <!-- When the length record exceeds this number, the
contents of the record
 will be transferred using a RemoteFile. Currently
set to 10 MB
 -->

<limitForRecordDatatransferInFile>10485760</limitForRecordDatatransferInFile>
 </bitarchive>
 <bitpreservation>
 <!-- Absolute or relative path to dir containing results
of
 file-list-batch-jobs and checksumming batch jobs
 for bit preservation-->
 <baseDir>bitpreservation</baseDir>
 </bitpreservation>
 </archive>
 <viewerproxy>
 <!-- The main directory for the ViewerProxy, used for storing
the Lucene
 index for the jobs being viewed -->
 <baseDir>viewerproxy</baseDir>
 </viewerproxy>
 <monitor>
 <!-- The name of the application, fx.
"BitarchiveServerApplication".
 The monitor puts this with each log message -->
 <applicationName>NA</applicationName>
 <logging>
 <historySize>100</historySize>
 </logging>
 </monitor>
</settings>

Appendix C : Plugins in the

NetarchiveSuite

All the settings above ending on ".class" indicate that there is a choice of several classes to

choose from. It is not always correct. But our framework does at least enable the installer to

replace the default class with a class of his own, or an already existing class (if available).

We now describe the available plugs, and existing plugins for these plugs.

settings.common.remoteFile.class: This setting allows you to select your chosen way of

filetransfer in the NetarchiveSuite. You can here choose between FTPRemoteFile (where

the data is transferred using a FTP-server), HTTPRemoteFile (where the data is transferred

using a two embedded webservers (one at each end), and HTTPSRemoteFile which works

just like HTTPRemoteFile except it uses a shared certificate file for secure communication.

[Firewall-note] The HTTPRemoteFile and HTTPSRemoteFile requires dedicated ports to be

open between all possible senders and recipients of data. For implementers of new

filetransfer methods, this class must implement the class

dk.netarkivet.common.distribute.RemoteFile. The default value is FTPRemoteFile.

settings.harvester.datamodel.database.specificsclass: This setting allows you select

which type of database you want to use. There are support for 3 types already: An

Embedded Derby database (dk.netarkivet.harvester.datamodel.DerbyEmbeddedSpecifics),

an external Derby database (dk.netarkivet.harvester.datamodel.DerbyClientSpecifics), or an

MySQL database (dk.netarkivet.harvester.datamodel.MySQLSpecifics). The default is

DerbyEmbeddedSpecifics. If you choose not to use the default, you need to replace the

default database URL(setting settings.harvester.datamodel.database.url), and maybe the time

for the daily backup to start (setting settings.harvester.datamodel.database.backupInitHour))

settings.common.jms.class This class designates what kind of JMS broker the

NetarchiveSuite uses to send messages between applications. Presently only the Sun JMS

brokers is supported (dk.netarkivet.common.distribute.JMSConnectionSunMQ). This class

must implement the dk.netarkivet.common.distribute.JMSConnection class.

settings.common.arcrepositoryClient.class. Must implement

dk.netarkivet.common.distribute.ArcRepositoryClient The available choices are the default

dk.netarkivet.archive.arcrepository.distribute.JMSArcRepositoryClient (that is required, if

you want to access the distributed type of archive that is included in the NetarchiveSuite).

and the dk.netarkivet.common.distribute.TrivialArcRepositoryClient (allows for access to a

local archive)

settings.common.notifications.class: Allows for different ways of making notifications.

The default choice is the class

dk.netarkivet.common.utils.EMailNotifications (which allows you to

receive notifications by email). The use of this plugin requires setting the mail-server, the

recipient- and sending email-address. Alternatively, you can use

dk.netarkivet.common.utils.PrintNotifications, which simply prints the

notifications to stderr on the terminal.

setting.common.webinterface.sitesection.class This setting allows you to add

webmodules to the NetarchiveSuite GUI. Several SiteSection classes can be active in the

same GUI. the default(standard) configuration contains all 5 existing webmodules:

HarvestDefinition: Allows you to define and schedule harvests ,1.

HarvestHistory: See the status of running and finished harvestjobs2.

BitPreservation: This module has tools for sanity testing data in the bitarchives3.

QA: Module for doing Quality Assurance4.

Status: Module for monitoring the health of all machines and applications5.

setting.common.webinterface.language: The languages supported by the webinterface.

Danish (locale=da)and English (locale=en) are supported currently. The Developer Manual

will tell you how to add support for more languages to the NetarchiveSuite.

settings.common.indexClient: The client selected for access to indices. Indices are

requested by the HarversterControllerApplication instances.

<indexClient xsi:type="indexrequestclient">
 <!-- The class instantiated to give access to indices.

Installation Manual (last edited 2008-06-12 16:26:07 by KaareChristiansen)

Will be
 created by IndexClientFactory -->

<class>dk.netarkivet.archive.indexserver.distribute.IndexRequestClient</class>
 <!-- The amount of time, in milliseconds, we should wait
for replies
 when issuing a call to generate an index over som
jobs.
 -->
 <indexRequestTimeout>43200000</indexRequestTimeout>
 </indexClient>

